

Orientierende Bodenuntersuchung

Neubau einer Wohnanlage, Gesmolder Str. 178, 49326 Melle

> Bearbeitungsnr. 265-02-22 Datum: 18.03.2022

Auftraggeber: TimCon GmbH & Co. KG

Piesberger Str. 2a 49090 Osnabrück Auftragnehmer: CT Gutachterbüro

Dipl.-Geogr. Carsten Temme

Neulandstraße 2-4 49084 Osnabrück

Inhaltsverzeichnis

1 Einleitun	g	2
2 Standortl	beschreibung	2
2.1 Allgeme	eine Angaben	2
2.2 Geolog	isch - hydrogeologische Standortbedingungen	3
3 Untersuc	hungsumfang	5
4 Bewertur	ngskriterien	7
4.1 Bodenl	uft	7
4.2 Boden		9
5 Ergebnis	se	10
5.1 Untersu	ıchung von Bodenluftproben	10
5.2 Untersu	uchung von Bodenproben	11
6 Bewertur	ng / Empfehlungen	13
7 Schlussw	vort	14
Anlagen		
Anlage 1	Lageplan der Sondierpunkte mit Ergebnissen, Maßstab 1 : 500	
Anlage 2	Schichtenprofile RKS 1 - 8	
Anlage 3	Prüfberichte Eurofins Umwelt West GmbH	
Anlage 4	Protokolle	
Anlage 4.1	Messprotokolle Bodenluft	
Anlage 4.2	Probenahmeprotokolle Oberboden	

1 Einleitung

Die TimCon GmbH & Co. KG, Osnabrück, plant, den nördlichen Teil des postalischen Grundstücks Gesmolder Str. 178 (Gemarkung Gesmold, Flur 1, Flurstück 64/5) in Melle-Gesmold mit einer Wohnanlage zu bebauen. Das betroffene Baufeld wurde bislang als Grünfläche/Mähwiese genutzt.

Unter der genannten Adresse ist im Altlastenkataster des Landkreises Osnabrück ein Altstandort gem. § 2 Abs. 5 Ziff. 2 des Bundes-Bodenschutzgesetzes (BBodSchG) registriert, d.h. dass der Verdacht für eine frühere gewerbliche Nutzung mit wasserund/oder bodengefährdenden Stoffen besteht. Im vorliegenden Fall ist die Nutzung eines Landmaschinenhandels mit Werkstatt/Schlosserei und eine Tankstelle für den Zeitraum von 1939 bis 1977 registriert.

Zur Umnutzung bzw. zur Änderung des B-Plans soll das Grundstück auf Anforderung der Unteren Bodenschutzbehörde des Landkreises Osnabrück einer orientierenden Altlastenuntersuchung unterzogen werden.

Das CT Gutachterbüro wurde daraufhin von der TimCon GmbH & Co. KG beauftragt, die Untersuchungen mit der zuständigen Behörde abzustimmen und durchzuführen. Da die gewerbliche Nutzung auf dem vorderen, an der Straße gelegenen Grundstück stattgefunden hat und die unter der gleichen postalischen Adresse geführten Baufläche nicht unmittelbar betrifft (vgl. Kap. 2), wurde mit der Unteren Bodenschutzbehörde vereinbart, nutzungsbezogene Untersuchungen im Übergangsbereich des Altgrundstücks zum Baufeld durchzuführen. Vorgesehen waren Boden- und Bodenluftuntersuchungen im südöstlichen Grenzbereich des Baufeldes (vgl. Kap. 3). Des Weiteren wurden verwertungsbezogene Bodenuntersuchungen im Baufeld durchgeführt, um die abzutragenden Bodenschichten fachgerecht zu deklarieren und verwerten zu können. Die Ergebnisse aller Untersuchungen werden im vorliegenden Bericht dargestellt.

Zur Erlangung von Kenntnissen über die ehemalige gewerbliche Nutzung wurde im Zuge eines Ortstermins mit dem Alteigentümer, der vor Ort wohnt und dessen Vater Betreiber der Werkstatt und der Tankstelle war, gesprochen. Anschließend wurde ein Lageplan von der ehemaligen Tankstelle und der Werkstatt von der Unteren Bodenschutzbehörde

Die Untersuchungen erfolgten auf Basis des Angebotes A0104-2021 vom 19.11.2021.

2 Standortbeschreibung

2.1 Allgemeine Angaben

Das Grundstück Gesmolder Str. 178 befindet sich am östlichen Rand des Ortszentrums von Melle-Gesmold. Südlich wird das Gelände von der Gesmolder Straße, nördlich, westlich und östlich von Wohngrundstücken begrenzt. Von dem insgesamt etwa 3.600m² großen Grundstück sind etwa 1.550m² dem bisherigen Wohn- und Gewerbe-

grundstück zuzuordnen. Die zur Bebauung überplante Wiesenfläche umfasst etwa 2.050m².

Auf dem vorderen Grundstück befinden sich, unmittelbar an der Straße gelegen, ein altes Bauernhaus, eine Garagenanlage aus 5 Garagen im nordöstlichen Bereich der Teilfläche und eine Doppelgarage am nördlichen Rand. Die Hoffläche vor dem Haus und der Garagenanlage ist gepflastert. Ebenfalls ist die Fläche zwischen Wohnhaus und Doppelgarage gepflastert. Hinter der Doppelgarage fällt das Gelände nach Westen und Norden um bis zu etwa 3,8m ab. Der westliche Bereich ist grasbewachsen.

Im Bereich der 5 Garagen stand bis etwa Anfang der 1980er Jahre eine kleine Werkstatt (10 x 12,5m) mit einem schmalen Anbau von etwa 2 x 7m. Nach Aussage des Eigentümers wurden kleinere Reparaturen an Landmaschinen und allgemeine Schlosserarbeiten ausgeführt. Nach dem vollständigen Rückbau wurde die Garagenanlage errichtet.

An der südöstlichen Hausecke des alten Wohnhauses befand sich eine kleine Tankstelle mit zwei Zapfsäulen und einem nördlich davon gelegenen 2x3m³ Vergaserkraftstoff-Erdtank (Super- und Normal-Benzin). Getankt wurde auf der Straßenseite der Zapfinsel. In dem zur Verfügung gestellten Plan ist zudem handschriftlich eine Diesel-Kleintankanlage auf der zentralen östlich Hoffläche eingezeichnet (s. Anl. 1). Vermutlich handelt es sich um eine kleine Mobilanlage, sofern diese überhaupt existiert hat.

Die Tankstelle wurde von etwa 1957 bis 1977 betrieben und wurde anschließend unter Regie der ARAL AG von der Fa. Wesseler aus Melle zurückgebaut. Laut Aussage des Eigentümers wurde seinerzeit auch Boden abgefahren.

In der Vergangenheit wurde der zentrale Bereich der Baufläche als Osterfeuerplatz genutzt (Luftbilder WebGis des Landkreises Osnabrück).

2.2 Geologisch - hydrogeologische Standortbedingungen

Nach den Daten der Geologischen Karte im Maßstab 1:25 000 (GK25) des Internetauskunftssystems NIBIS® Kartenserver, zur Verfügung gestellt vom Landesamt für Bergbau, Energie und Geologie (LBEG), ist im Bereich des Untersuchungsgrundstückes mit dem Auftreten von pleistozänen Lössablagerungen zu rechnen.

Die Aufschlussbohrungen haben eine relativ einheitliche Schichtenfolge (Versiegelungen werden nicht berücksichtigt) erschlossen, die vereinfacht wie folgt beschrieben wird:

bis ca. 0,15/0,2 m unter GOK:

(nicht in RKS 1 und 3 angetroffen)

Humoser Oberboden, angedeckt/aufgefüllt

bis ca. 1,1/1,8 m unter GOK:

Anthropogene Auffüllungen

Inhomogen zusammengesetzte Gemische aus hauptsächlich Schluff, mit variierenden Anteilen an Sand und Gesteinsbruch, teilweise schwach tonig und schwach humos bis humos, wobei sich der Steinanteil i. W. aus Bauschutt, Beton, Ziegelbruch, Kohle und Natursteinbruch zusammensetzt. Stellenweise sind weitere anthropogene Bestandteile, wie Glas, eingelagert (RKS 2). Die Auffüllungen sind erdfeucht bis nass.

bis ca. 1,7/3,4 m unter GOK bzw. bis zur max. Aufschlusstiefe von ca. 3.0 m unter GOK:

Löss und Sandlöss (Pleistozän)

Schluff, schwach feinsandig bis stark feinsandig, schwach tonig, im Sandlöss auch feinsanddominiert und teils schwach mittelsandig. Die Lössablagerungen sind erdfeucht bis feucht.

bis ca. 4,0/7,0 m unter GOK:

(nicht in RKS 1 und 2 angetroffen)

Glazifluviatile Ablagerungen (Pleistozän)

Inhomogene und wechselgeschichtete Gemische aus Sand, Schluff und Ton, in variierender Zusammensetzung, häufig schwach kiesig bis kiesig. Die Böden sind überwiegend bindig ausgeprägt und nur sehr vereinzelt nicht bindig. Die glazifluviatilen Ablagerungen weisen stark variierende Bodenwassergehalte auf und sind erdfeucht bis grundwasserführend.

bis zur max. Aufschlusstiefe von ca. 7,5/8,0 m unter GOK:

(nicht in RKS 1 und 2 angetroffen)

<u>Verwitterungslehm des unterlagernden</u> <u>Festgesteins (Tonstein, Keuper, Trias)</u>

Sehr inhomogene Gemische aus Tonsteinbruch und Lehm (Schluff und Ton, sandig), ohne mineralischen Zusammenhalt. Die Verwitterungslehme sind feucht bis teils wassergesättigt.

Grundwasser wurde bei den Baugrunduntersuchungen am 15. und 16.02.2022 mit dem Kabellichtlot in den tieferen Aufschlussbohrungen RKS 3 bis RKS 8 in nicht einheitlichen Tiefen zwischen ca. 80,1 mNHN und ca. 78,4 mNHN gemessen. Die Messergebnisse der Grundwasserstandsmessungen sind in Tabelle 1 dargestellt.

Tab. 1: Ergebnisse der Grundwass<u>erstandsmessungen</u>

Bohrung	Datum	GOK [mNHN]	GW-Flurabstand [m u. GOK]	GW-Stand [mNHN]
RKS 1	15.02.2022	85,04	n. b.	n. b.
RKS 2	15.02.2022	84,89	n. b.	n. b.
RKS 3	16.02.2022	84,92	5,75	79,17
RKS 4	16.02.2022	81,27	2,92	78,35
RKS 5	15.02.2022	81,84	3,25	78,59
RKS 6	15.02.2022	82,35	3,45	78,90
RKS 7	15.02.2022	82,64	3,55	79,09
RKS 8	15.02.2022	83,07	3,01	80,06
	Maximalwert		5,75	80,06
	Minimalwert		2,92	78,35
	Mittelwert		3,66	79,03

Wie den Grundwasserständen in Abgleich mit der jeweiligen Geländehöhe zu entnehmen ist, fällt die Grundwasseroberfläche dem Hanggelände entsprechend etwa in Richtung Norden ein.

3 Untersuchungsumfang

Mit der Unteren Bodenschutzbehörde des Landkreises Osnabrück wurde zur nutzungsbezogenen Gefährdungsabschätzung abgestimmt, im Übergangsbereich des gewerblich genutzten Teils des Grundstücks zur eigentlichen Baufläche Rammkernsondierungen und Bodenluftmessungen durchzuführen, da für das Baufeld keine direkte Beeinträchtigung durch die gewerbliche Nutzung abzuleiten ist. Das heißt, dass der relevante Wirkungspfad für die geplante Bebauung primär der Boden-Bodenluft-Pfad ist. Die Grundstücksbereiche der früheren gewerblichen Nutzung bleiben von der geplanten Baumaßnahme unberührt.

Zur Erschließung der Boden- bzw. vorrangig der Bodenluftverhältnisse im Übergangsbereich vom früher gewerblich genutzten und bebauten Teil des Grundstücks Gesmolder Str. 178 zum hinteren Baugrundstück wurden am 15./16.02.22 drei Rammkernsondierungen (RKS 1 bis RKS 3) abgeteuft. Weitere fünf Rammkernsondierungen (RKS 4 bis RKS 8, Bohrungen RKS gem. EN ISO 22475-1) wurden auf der Grünlandfläche hinter der Altbebauung niedergebracht. RKS 3 bis RKS 8 dienten dabei auch der Baugrundbeurteilung und wurden deshalb bis 8m Tiefe abgeteuft. RKS 1 und 2 wurden zur Bodenluftmessung und Beurteilung der oberflächennahen Schichtenfolge nur bis in 3m Tiefe abgeteuft, da sie für die Baugrundbeurteilung nicht relevant sind.

Die Lage der Bodenaufschlusspunkte ist der Anlage 1 zu entnehmen. Die Ergebnisse der Aufschlussbohrungen wurden gem. DIN 4023 in Schichtenprofilen in der Anlage 2 dargestellt.

Zielsetzung war, über Bodenluftuntersuchungen Hinweise auf etwaige Belastungen mit leichtflüchtigen Schadstoffen, im vorliegenden Fall aromatische Kohlenwasserstoffe (BTXE) aus Vergaserkraftstoff von der ehem. Tankstelle, zu bekommen. Nachdem die Bohrlöcher zunächst mangels eine zur Verfügung stehenden Messausrüstung provisorisch verschlossen wurden, konnten die Bodenluftuntersuchungen an den Sondierpunkten RKS 1 bis RKS 3 am 17.02.22 durchgeführt werden. Die Bohrlöcher wurden dafür mit einer Edelstahlsonde zu einer temporären Bodenluftmessstelle ausgebaut. Anschließend wurde die Bodenluft mit einem Bodenluftentnahmesystem (Vakuumpumpe, Deponiegasmonitor, Photoionisationsdetektor) vor Ort gemessen. Das Ansaugen der Bodenluft erfolgte über die Edelstahlsonde mit aufblasbarem Gummikegel zur Abdichtung des Bohrlochs gegenüber der Atmosphäre. Im zweiten Untersuchungsschritt wurden die Permanentgase mit einem Deponiegasmonitor gemessen. Der Photoionisationsdetektor (PID) wurde anschließend zum Aufspüren leichtflüchtiger Schadstoffe eingesetzt.

Für den Fall eines deutlich positiven PID-Messwertes war eine Beprobung der Bodenluft mit anschließender Analytik auf leichtflüchtige aromatische Kohlenwasserstoffe (BTXE) im Labor vorbehalten.

Zur Überprüfung der oberen Bodenschichten auf schadstoffhaltige Rückstände aus der Osterfeuernutzung im zentralen Bereich des Baufeldes wurde der Oberboden der betroffenen Fläche (15 manuelle Bohrstocksondierungen) und des Umfeldes (25 manuelle Bohrstocksondierungen) getrennt voneinander beprobt, um ggf. getrennte Abfalldeklarationen durchführen zu können. Die Entnahmetiefe betrug etwa 40cm und ist damit zu begründen, dass oberflächlich keine Auffälligkeiten festzustellen waren. Bei einem ggf. durchgeführten Umbruch zum Einarbeiten der Brandrückstände sind 40cm die maximale Pflugtiefe. Auf eine horizontierte nutzungsbezogene Probenahme nach der BBodSchV für den Pfad Boden-Mensch wurde verzichtet, da der Oberboden im Zuge der Baumaßnahme abgetragen und verwertet werden muss. Diesbezüglich wurde auch die Analyse der entnommenen Mischproben verwertungsbezogen durchgeführt.

Des Weiteren wurde aus den Bohrungen entsprechend den angesprochenen Auffälligkeiten bzw. schichtenweise insgesamt 64 gestörte Bodenproben entnommen. Aus dem gründungsrelevanten Tiefenbereich der Rammkernsondierungen wurden die Proben des humosen Oberbodens sowie der darunter angetroffenen Auffülllungen (im Wesentlichen schwach humose umgelagerte Böden) bereichsweise zu Mischproben zusammengestellt (s. Tab. 1) und dem Labor der EUROFINS Umwelt West GmbH, Wesseling, zur chemischen Analytik überstellt (s. Anlage 3).

Die zur Laboruntersuchung entnommenen und tlw. zu Mischproben zusammengestellten Proben, organoleptische Auffälligkeiten der Misch- und Einzelproben sowie die untersuchten Parameter sind der nachfolgenden Tabelle 2 zu entnehmen. Dabei wurden die Humusbodenproben der Sondierungen RKS 2, 7 und 8 sowie RKS 4, 5 und 6 aus dem Tiefenbereich bis max. 20cm zur Abgrenzung der Befunde der Probe "MP Humusboden" zu Mischproben zusammengestellt, da im Zuge der manuellen Beprobung im Umfeld der letztgenannten RKS (im Wesentlichen östlich RKS 5) mehrfach Ziegelbruch und Kohle angetroffen wurde.

Tab. 2: Zusammenstellung der untersuchten Proben

Proben-	Enthaltene Einzel-	Auffälligkeiten /	Untersu-
bezeichnung	proben	technogene Fremdbestandteile	chungs-
	(Tiefenbereich)		programm
MU 2,7,8	RKS 2/1 (0-0,15m)		
(0-15/20cm)	RKS 7/1 (0-0,15m)	Einzelne Kohlebröckchen	PAK
	RKS 8/1 (0-0,2m)		
MU 4-6 (0-15/20cm)	RKS 4/1 (0-0,15m)		
	RKS 5/1 (0-0,15m)	vereinzelt Ziegelbröckchen und Kohle	PAK
	RKS 6/1 (0-0,2m)		
Auffüllung West	RKS 4/2 (0,15-1,3m)	-	
(15/20-115/130cm)	RKS 7/2 (0,2-1,15m)	Kohle	
	RKS 8/2 (0,2-1,3m)	Kohle	
Auffüllung Ost	RKS 3/2 (0,4-1,8m)	Beton- und Ziegelbröckchen, Kohle	LAGA (2004),
(15/20-110/180cm)	RKS 5/2 (0,15-1,3m)	Ziegelbröckchen, Kohle	Tab. II 1.2-4 / 5
	RKS 6/2 (0,2-1,1m)	Ziegelbröckchen, Kohle	
MP Humusboden	0-40cm	vereinzelt Ziegelbröckchen und Kohle	
MP Osterfeuerfläche	0-40cm	Kohle	

4 Bewertungskriterien

4.1 Bodenluft

Für die Beurteilung der Bodenluftergebnisse gibt es keine einheitlichen Grenz-/ Richtwerte. Bezogen auf die Parameter Sauerstoff, Kohlendioxid und Methan geht es bei den Messungen vor allem darum, Erkenntnisse hinsichtlich möglicher Verrottungsprozesse im Untergrund zu erhalten, um beim Antreffen von Methan eine Einschätzung der Brand- und Explosionsgefahr vornehmen zu können. Es erweisen sich Methan-/ Luftgemische mit Methan-Gehalten zwischen 5 Vol.-% und 15 Vol.-% bereits bei einer niedrigen Zündtemperatur als brennbar (Explosionsgefahr).

Bezogen auf leichtflüchtige Kohlenwasserstoffe (LHKW/BTEX) können nach den Maßstäben der BBodSchV Prüfwerte standortbezogen abgeleitet werden. Dies erfolgt nach einer Vorgabe des Umweltbundesamtes (UBA, 1999). Die so erlangten Werte sind als orientierende Werte anzusehen und haben nicht die rechtliche Verbindlichkeit der Prüfwerte gemäß BBodSchV. Wenn die örtlichen Gegebenheiten oder die Ergebnisse von Bodenluftuntersuchungen Anhaltspunkte für die Ausbreitung von gasförmigen Schadstoffen in Gebäude ergeben, sollen laut BBodSchV (§ 3 Abs. 6) Untersuchungen der Innenraumluft erfolgen. Für eine orientierende Bewertung dieses Wirkungspfades anhand von Feststoffwerten liegen die Werte der LABO – Richtlinie "Bewertungsgrundlagen für Schadstoffe in Altlasten" (Informationsblatt für den Vollzug, Bund/ Länderarbeitsgemeinschaft Boden, Stand 01.09.2008) vor. In dieser Richtlinie werden orientierende Hinweise für flüchtige Stoffe bei Untersuchung des Bodenfeststoffes gegeben (vgl. Tabelle 3).

Tab. 3: Orientierende Hinweise für flüchtige Stoffe im Feststoff (LABO, 2008)

Parameter	Orientierende Hinweise für Wohngebiete (mg/kg TR)	Orientierende Hinweise für Industrie- u. Gewerbegrundstücke (mg/kg TR)
Benzol	0,1*	0,4
Ethylbenzol	3	30
Toluol	10	120
Xylole	10	100
1,3,5-Trimethylbenzole und andere TMB-Isomere	200	2.000
Tetrachlorethen ("Per")	1,5	25
Trichlorethen ("Tri")	0,3	5
1,1,1-Trichlorethan	15	180
Dichlormethan	0,1	2

^{* = 0,1} entspricht der Bestimmungsgrenze

Weiterhin werden in der LABO-Richtlinie Bewertungshinweise für Schadstoffkonzentrationen in der Bodenluft bezüglich einer Anreicherung in der Innenraumluft (Szenario "Wohngebiete") gegeben (vgl. Tabelle 4). Die in der LABO-Richtlinie angegebenen Bodenluft-Orientierungswerte wurden unter der Verwendung von toxikologischen Daten und unter Annahme eines bestimmten Transferfaktors zwischen der Bodenluft und der Innenraumluft abgeleitet.

Tab. 4: Orientierende Hinweise für flüchtige Stoffe in der Bodenluft (LABO, 2008)

Parameter	Orientierende Hinweise für flüchtige Stoffe in der Bodenluft (mg/m³)					
Benzol	10					
Ethylbenzol	200					
Toluol	1.000					
Xylole	1.000					
1,3,5-Trimethylbenzol	1.000					
Tetrachlorethen (Per)	70					
Trichlorethen (Tri)	20					
1,1,1-Trichlorethan	1.000					
cis-1,2-Dichlorethen	900					
Dichlormethan	80					
Tetrachlormethan	3					
Vinylchlorid	4					

Bei der Anwendung der LABO-Orientierungswerte ist eine Einzelfallprüfung der Standortfaktoren unbedingt erforderlich.

Außerdem können die Bodenluft-Prüf- und Maßnahmenwerte der LAWA-Richtlinie "Empfehlungen für die Erkundung, Bewertung und Behandlung von Grundwasserschäden (1994) herangezogen werden. Der darin angegebene Prüfwertebereich für leichtflüchtige Aromaten und halogenierte Kohlenwasserstoffe von 5-10mg/m³ ist als Auslö-

ser für weitergehende Untersuchungen anzusehen. Der untere Prüfwert bedeutet dabei eine Überschreitung des Referenzwertes bzw. der Hintergrundbelastung. Der obere Prüfwert stellt die Langzeittoxizität dar. Der Maßnahmenschwellenwert von 50mg/m³ gibt bei Überschreitung unter Berücksichtigung der Standortgegebenheiten den Hinweis auf eventuell erforderliche Sanierungsmaßnahmen und stellt ein Vielfaches der Langzeittoxizität dar.

4.2 Boden

Eine Oberbodenbeprobung im Sinne der BBodSchV zur Bewertung möglicher Gefährdungen über den direkten Wirkungspfad Boden-Mensch war mangels Anlass nicht Gegenstand der aktuellen Untersuchungen.

Für den Pfad Boden-Grundwasser werden Prüfwerte in der wässrigen Phase im Übergang von der ungesättigten zur wassergesättigten Bodenzone angesetzt. Der Ort der Probenahme stimmt dabei nicht zwingend mit dem Ort der Beurteilung überein. Gemäß BBodSchV sind dann "bei der Bewertung, ob es zu erwarten ist, dass die Prüfwerte für das Sickerwasser am Ort der Beurteilung überschritten werden, (...) die Veränderungen der Schadstoffkonzentrationen im Sickerwasser beim Durchgang durch die ungesättigte Bodenzone sowie die Grundwasserflurabstände und deren Schwankungen zu berücksichtigen". Da am Standort nur gering durchlässige Sedimente als gute Barriere gegenüber potenziellen Schadstoffen anstehen, bleibt die Bewertung dieses Wirkungspfades anhand der o.g. Prüfwerte zunächst unberücksichtigt.

Zur allgemeinen und auch verwertungsbezogenen Beurteilung der Bodenqualität werden deshalb die Zuordnungswerte der LAGA TR Boden (2004) orientierend gegenübergestellt.

<u>LAGA-Richtlinie</u> "Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen / Abfällen"

(Länderarbeitsgemeinschaft Abfall, 1997 – TR Boden 2004)

Für die Beurteilung zukünftig anfallender Aushubmassen wird bezüglich einer erforderlichen Verwertung/Entsorgung die LAGA-Richtlinie "Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen / Abfällen" (Länderarbeitsgemeinschaft Abfall) herangezogen.

In der LAGA-Richtlinie werden Böden bzw. mineralische Reststoffe entsprechend ihrem Belastungsgrad den Einbauklassen Z 0 bis Z 2 (LAGA-Zuordnungswerte Boden, Tabelle II 1.2-4/-5) zugeordnet. Material der Einbauklasse Z 0, welches für Auffüllungen verwendet wird, ist in der Regel als natürliches Bodenmaterial zu definieren, das die bodenartspezifischen Vorsorgewerte bzw. für weitere Schadstoffparameter die Zuordnungswerte Z 0 einhält (s. LAGA, 2004). Bauschutt, der die Z0-Anforderungen des Boden- und Grundwasserschutzes erfüllt, darf nur für technische Zwecke verwendet werden.

Die Zuordnungswerte Z 1 bilden die Obergrenze für den Einbau mineralischer Abfälle in wasserdurchlässiger Bauweise. Genauere Vorgaben für die Differenzierung sind der LAGA-Richtlinie zu entnehmen. Beim eingeschränkten offenen Einbau wird unterschieden, ob im Bereich der Verwertungsmaßnahme ungünstige oder günstige hydrogeologische Bedingungen vorliegen (Einbauklassen Z 1.1 u. Z 1.2).

Material der Einbauklasse Z 2 kann nach den Vorgaben der LAGA-Richtlinie mit definierten technischen Sicherheitsmaßnahmen oberhalb des Grundwasserschwankungsbereiches eingebaut / verwertet werden. Als derartige Baumaßnahmen können z. B. Lärmschutzwälle mit mineralischer Oberflächenabdeckung und versiegelte Flächen (Stellflächen, Straßen usw.) genannt werden. Schadstoffgehalte, die über dem Zuordnungswert Z 2 liegen, sind abfallrechtlich zu behandeln. Dabei sind die Festsetzungen im Erlass "Abgrenzung von Bodenmaterial und Bauschutt mit und ohne schädliche Verunreinigungen" (Nieders. Ministerium f. Umwelt und Klimaschutz, 10.09.2010) zu beachten.

5 Ergebnisse

5.1 Untersuchung von Bodenluftproben

Die an den Sondierpunkten RKS 1 bis RKS 3 durchgeführten Bodenluftmessungen waren vor Ort unauffällig (vgl. Anlage 4). Die Messungen mit dem Photoionisationsdetektor ergaben keine positiven Befunde. Auf eine Probenahme und Laboranalytik wurde deshalb verzichtet.

In Tabelle 5 sind die Ergebnisse der standardmäßig durchzuführenden Vor-Ort-Messungen auf die Permanentgase Sauerstoff (O₂), Kohlendioxid (CO₂) und Methan (CH₄) sowie die PID-Messungen auf leichtflüchtige Schadstoffe dargestellt.

Tab. 5: Ergebnisse der Bodenluftmessungen vor Ort

Bohrpunkt	O ₂	CO ₂	CH ₄	PID-Befund	Param (in mg	
		in Vol-%		in ppm	ΣLHKW	Σ ΒΤΧΕ
RKS 1	18,3	1,4	0,0	< 0,1	n. u.	n. u.
RKS 2	20,3	2,4	0,0	< 0,1	n. u.	n. u.
RKS 3	20,7	0,9	0,0	< 0,1	n. u.	n. u.

n. u. = nicht untersucht

5.2 Untersuchung von Bodenproben

Organoleptische Auffälligkeiten hinsichtlich von Kohlenwasserstoffen wurden an den entnommenen Bodeneinzelproben nicht festgestellt.

In der umseitigen Tabelle 6 werden die Laborergebnisse der Feststoff- und Eluatuntersuchungen den Zuordnungswerten der LAGA-Richtlinie (TR Boden 2004), Tab.II.1.2-4/-5 gegenübergestellt.

Zur Bewertung werden die Zuordnungswerte für die Bodenart Lehm / Schluff herangezogen, da die angetroffenen Böden durchgehend bindige Eigenschaften aufweisen.

Zunächst wurden die Oberbodenmischproben "MP Humusboden" und "MP Osterfeuerfläche" untersucht. Im Bereich der Osterfeuerfläche wurde mindestens ein erhöhter PAK-Gehalt erwartet, was sich jedoch nicht bestätigte. Vielmehr ist der PAK-Gehalt der Probe aus dem Bereich außerhalb der Osterfeuerfläche mit knapp über 4mg/kg geringfügig erhöht und liegt damit im Bereich der LAGA-Einbauklasse Z 2. Die weiteren Parameter sowie die Ergebnisse der Probe aus dem Bereich der Feuerstellen sind dagegen unauffällig und der Einbauklasse Z 0 zuzuordnen. Die TOC-Gehalte werden an dieser Stelle aufgrund der Eigenschaft eines Kulturbodens nicht berücksichtigt, da sie im Wesentlichen dem Humusgehalt zuzuschreiben sind. Allenfalls kann der geringe Unterschied zwischen den beiden Proben den Brandrückständen zugeordnet werden.

Da im Zuge der Beprobung im östlichen Umfeld der RKS 5 etwas häufiger Ziegelbröckchen und Kohlestückchen festgestellt wurden, sollten die Oberbodenproben der dort benachbarten RKS 4, 5 und 6 [Probe "MU 4-6 (0-15/20cm)] sowie der südlich und westlich gelegenen RKS 2, 7 und 8 [Probe "MU 2, 7, 8 (0-15/20cm)] als Mischprobe zur Abgrenzung nachuntersucht werden. Die beiden "Mutterbodenproben" können gut gegeneinander abgegrenzt werden, da die Annahme einer höheren Belastung in der Probe "MU 4-6 (0-15/20cm)" mit 5,65mg PAK/kg gegenüber 1,04mg/kg in der Probe "MU 2, 7, 8 (0-15/20cm)" bestätigt wird.

Zur Tiefe hin wurden aus den gleichen Sondierungen jeweils Mischproben aus den darunter lagernden aufgefüllten Böden (Proben "Auffüllung Ost…" und "Auffüllung West…"), bei denen es sich augenscheinlich um umgelagerte Auenböden handelt, gebildet. In diesen Proben können keine auffällig erhöhten Werte bestätigt werden. Alle untersuchten Parameter halten die LAGA-Z0-Werte ein. Aufgrund der schwach humosen Prägung der aufgefüllten Böden liegen die TOC-Gehalte knapp oberhalb des Z0-Wertes.

GESMOLDER STR. 178, MELLE-GESMOLD

Tab. 6: Analysenergebnisse und LAGA-Zuordnungswerte

Bezeichnung	Einheit	MP Humus- boden	MP Osterfeuer- fläche	MU 2,7,8 (0-15/20cm)	MU 4-6 (0-15/20cm)	Auffüllung West (15/20- 115/130cm)	Auffüllung Ost (15/40- 110/180cm)	Z0 Lehm / Schluff	Z0*	Z1.1	Z1.2	Z2
Probennummer		722003999	722004000	022036011	022036015	022036019	022036023					
Untersuchungen im Fes	ststoff											
TOC	Ma% TS	1,9	2,6	-	-	1,0	0,9	0,5 (1)	0,5 (1)	1,5	1,5	5
EOX		< 1,0	< 1,0	-	-	< 1,0	< 1,0	1	1	3	3	10
Cyanide, gesamt		< 0,5	< 0,5	-	-	< 0,5	< 0,5	-	-	3	3	10
KW-Index C10-C22		< 40	< 40	•	-	< 40	< 40	100	200	300	300	1000
KW-Index C10-C40		< 40	< 40	ı	=	< 40	< 40	-	400	600	600	2000
Summe BTEX		(n. b.)	(n. b.)	•	-	(n. b.)	(n. b.)	1	1	1	1	1
Summe LHKW		(n. b.)	(n. b.)	-	-	(n. b.)	(n. b.)	1	1	1	1	1
Summe 6 DIN-PCB		(n. b.)	(n. b.)	-	-	(n. b.)	(n. b.)	0,05	0,1	0,15	0,15	0,5
Benzo[a]pyren		0,42	0,20	0,11	0,52	0,21	< 0,05	0,3	0,6	0,9	0,9	3
Summe 16 EPA-PAK	, TO	4,09	1,73	1,04	5,65	1,81	0,25	3	3	3	3 (9)	30
Arsen (As)	mg/kg TS	4,3	5,9	-	-	4,0	4,3	15	15	45	45	150
Blei (Pb)		48	43	-	-	30	22	70	140	210	210	700
Cadmium (Cd)		0,4	0,3	-	-	0,3	< 0,2	1	1	3	3	10
Chrom (Cr)		16	15	-	-	15	13	60	120	180	180	600
Kupfer (Cu)		17	22	-	-	22	19	40	80	120	120	400
Nickel (Ni)		14	12	-	-	11	10	50	100	150	150	500
Quecksilber (Hg)		0,09	0,12	-	-	0,07	< 0,07	0,5	1	1,5	1,5	5
Thallium (TI)		< 0,2	< 0,2	-	-	< 0,2	< 0,2	0,7	0,7	2,1	2,1	7
Zink (Zn)		101	115	-	-	84	62	150	300	450	450	1500
Untersuchungen im Elu	at											
pH-Wert		6,6	6,8	-	-	7,9	8,5	6,5-9,5	6,5-9,5	6,5-9,5	6-12	5,5-12
Leitfähigkeit bei 25°C	μS/cm	61	75	-	-	37	62	250	250	250	1500	2000
Chlorid (CI)		< 1,0	< 1,0	-	-	< 1,0	< 1,0	30	30	30	50	100
Sulfat (SO4)	mg/l	< 1,0	< 1,0	-	-	< 1,0	< 1,0	20	20	20	50	200
Cyanide, gesamt		< 5	< 5	-	-	< 5	< 5	5	5	5	10	20
Arsen (As)		2	7	-	-	2	3	14	14	14	20	60
Blei (Pb)		4	9	-	-	3	< 1	40	40	40	80	200
Cadmium (Cd)		< 0,3	< 0,3	-	-	< 0,3	< 0,3	1,5	1,5	1,5	3	6
Chrom (Cr)		< 1	1	-	-	< 1	< 1	12,5	12,5	12,5	25	60
Kupfer (Cu)	μg/l	8	12	-	-	8	< 5	20	20	20	60	100
Nickel (Ni)		1	2	-	-	1	< 1	15	15	15	20	70
Quecksilber (Hg)		< 0,2	< 0,2	-	-	< 0,2	< 0,2	< 0,5	< 0,5	< 0,5	1	2
Zink (Zn)		10	30	-	-	< 10	< 10	150	150	150	200	600
Phenolindex, wdf.		< 10	< 10	-	-	< 10	< 10	20	20	20	40	100

n.b. = nicht berechenbar, da Einzelparameter < Bestimmungsgrenze;

Detaillierte Informationen zu den verwendeten Zuordnungswerten sind dem Original-Regelwerk zu entnehmen.

6 Bewertung / Empfehlungen

Die Boden- und Bodenluftuntersuchungen im Übergangsbereich vom früher gewerblich genutzten südlichen Grundstück mit der Altbebauung zum künftigen Baugrundstück waren unauffällig. Es wurden keine Auffälligkeiten im Boden und der Bodenluft, die auf Belastungen mit leichtflüchtigen aromatischen und/oder Mineralölkohlenwasserstoffen aus der Nutzung der früheren Tankstelle bzw. der Werkstatt hinweisen, festgestellt. Das Neubauvorhaben wird folglich nicht von der früheren gewerblichen Nutzung beeinträchtigt.

Die zum Abbrand von Osterfeuern genutzte Fläche im zentralen Bereich der Baufläche weist keine signifikant erhöhten Schadstoffgehalte im Oberboden auf, die auf die vergangene temporäre Nutzung hinweisen. Die zunächst leicht erhöhten PAK-Gehalte der Oberbodenmischprobe von den Flächen außerhalb der Osterfeuerfläche konnte in den nachträglich veranlassten Abgrenzungsuntersuchungen auf den nordöstlichen Grundstücksbereich, der bereits während der Oberbodenbeprobung durch vermehrte Beimengungen an Kohle und Ziegelbröckchen auffiel, und die oberen 20cm begrenzt werden. Der in diesem Bereich anfallende Abtragsboden ist aufgrund des PAK-Gehaltes bis in 20cm Tiefe als Boden der LAGA-Einbauklasse Z 2 einzustufen. Alle übrigen untersuchten Untersuchungsergebnisse erfüllen die Kriterien der LAGA-Einbauklasse Z 0, das heißt, das sowohl der humose Oberboden als auch die darunter befindlichen Auffüllungen unproblematisch verwertet werden können. Der "Mutterboden" ist dabei einer Aufbereitung/Wiederverwendung als Kulturboden zuzuführen, um seine Funktion gem. den Vorgaben des BBodSchG zu erhalten. Die aufgefüllten schwach humosen Böden darunter sollten idealerweise bei der Verfüllung einer Abgrabung in der Durchwurzelungsschicht verwertet werden. Da die TOC-Gehalte nur etwas oberhalb des Z 0-Wertes der LAGA TR Boden bei maximal 1 % liegen. Mit Zustimmung der Unteren Bodenschutzbehörde oder alternativ mit einer Nachuntersuchung des C:N-Verhältnisses kann ggf. eine Verwertung unterhalb der Durchwurzelungsschicht stattfinden.

Eine Schutzgutgefährdung gemäß der BBodSchV und ein diesbezüglicher Handlungsbedarf lassen sich aus den vorliegenden Untersuchungsergebnissen und den geologischen und hydrogeologischen Standortbedingungen für das künftige Baugrundstück insgesamt nicht ableiten. Für spätere bauliche Maßnahmen im unmittelbaren ehemaligen Tankstellen- oder Werkstattbereich ist die Situation neu zu bewerten.

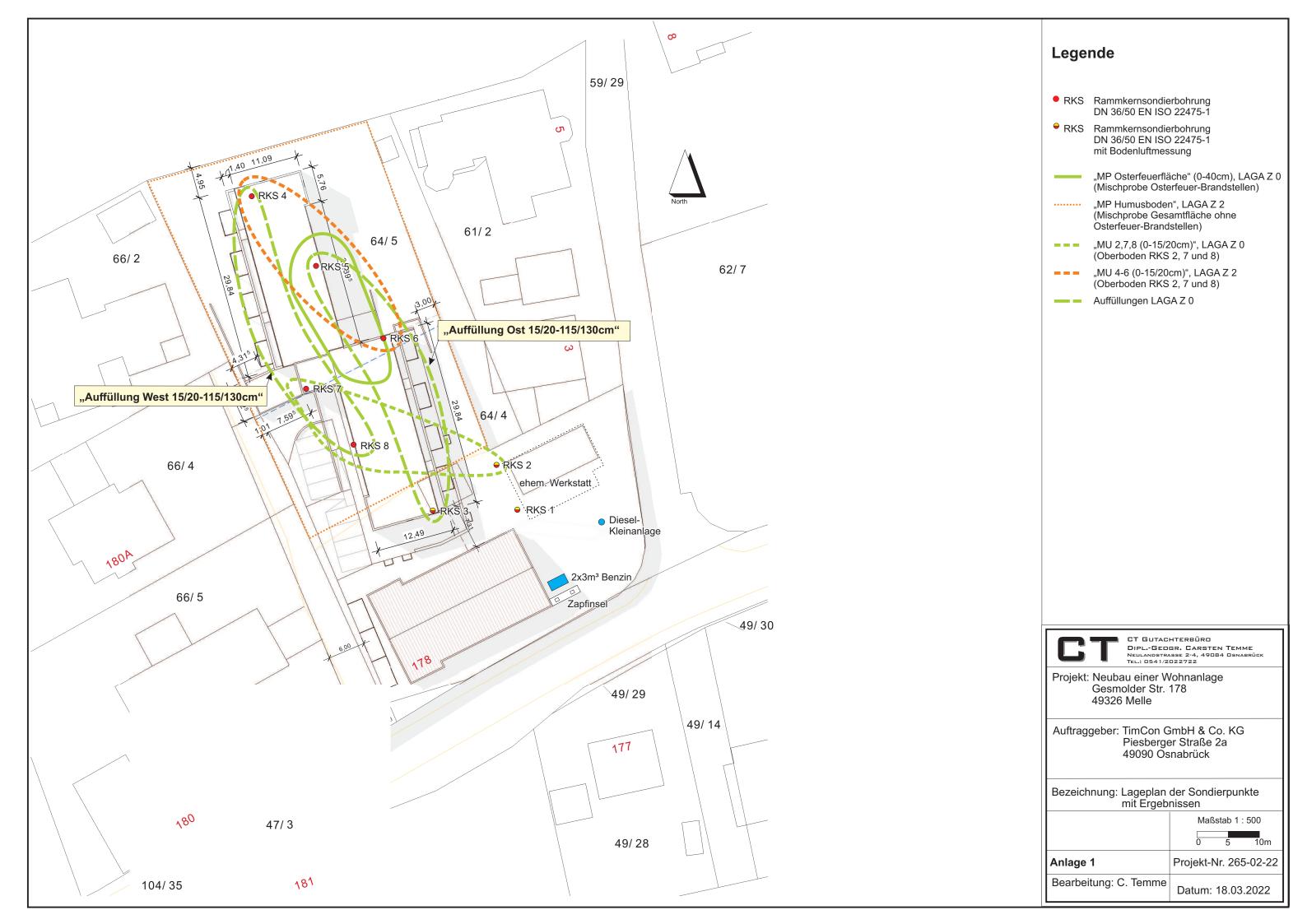
Zur fachgerechten Separierung der Z 2-Böden im nordöstlichen Baufeld von den übrigen unbelasteten Böden wird eine fachgutachtliche Begleitung der Erdarbeiten empfohlen. In diesem Zusammenhang können auch die Erdarbeiten im südlichen Baufeld und damit im Übergangsbereich zum Altstandort begleitet werden.

7 Schlusswort

Der Gutachter ist zu einer ergänzenden Stellungnahme aufzufordern, wenn sich Fragen ergeben, die im vorliegenden Gutachten nicht oder abweichend erörtert wurden.

Das vorliegende Gutachten ist der Unteren Bodenschutzbehörde des Landkreises Osnabrück zur Kenntnisnahme vorzulegen.

Osnabrück, den 18.03.2022


Dipl.-Geogr. Carsten Temme

C. Terme

Anlagen

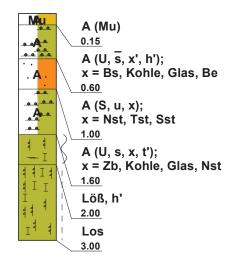
Anlage 1

Lageplan der Sondierpunkte mit Ergebnissen Maßstab 1:500

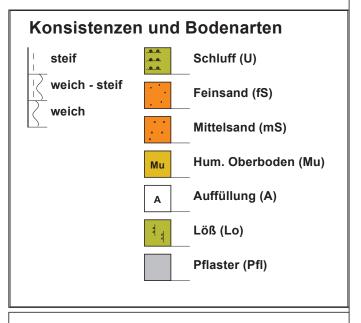
Anlage 2

Schichtenprofile RKS 1-8, Höhenmaßstab 1:50 **mNHN** 87.00 86.00 85.00 84.00 83.00 82.00 81.00 80.00 79.00 78.00 77.00

76.00

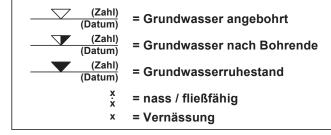

RKS₁ 85,04 mNHN

Pfl 0.08 A (mS, fs, u') 0.40 A (U, ms, fs, x', h'); x = Bs, Kohle, Be 0.70 A(U, s, t', x');x = Zb1.20 A (U, fs, ms, t') 1.60 Löß, h' 2.30 Los 3.00

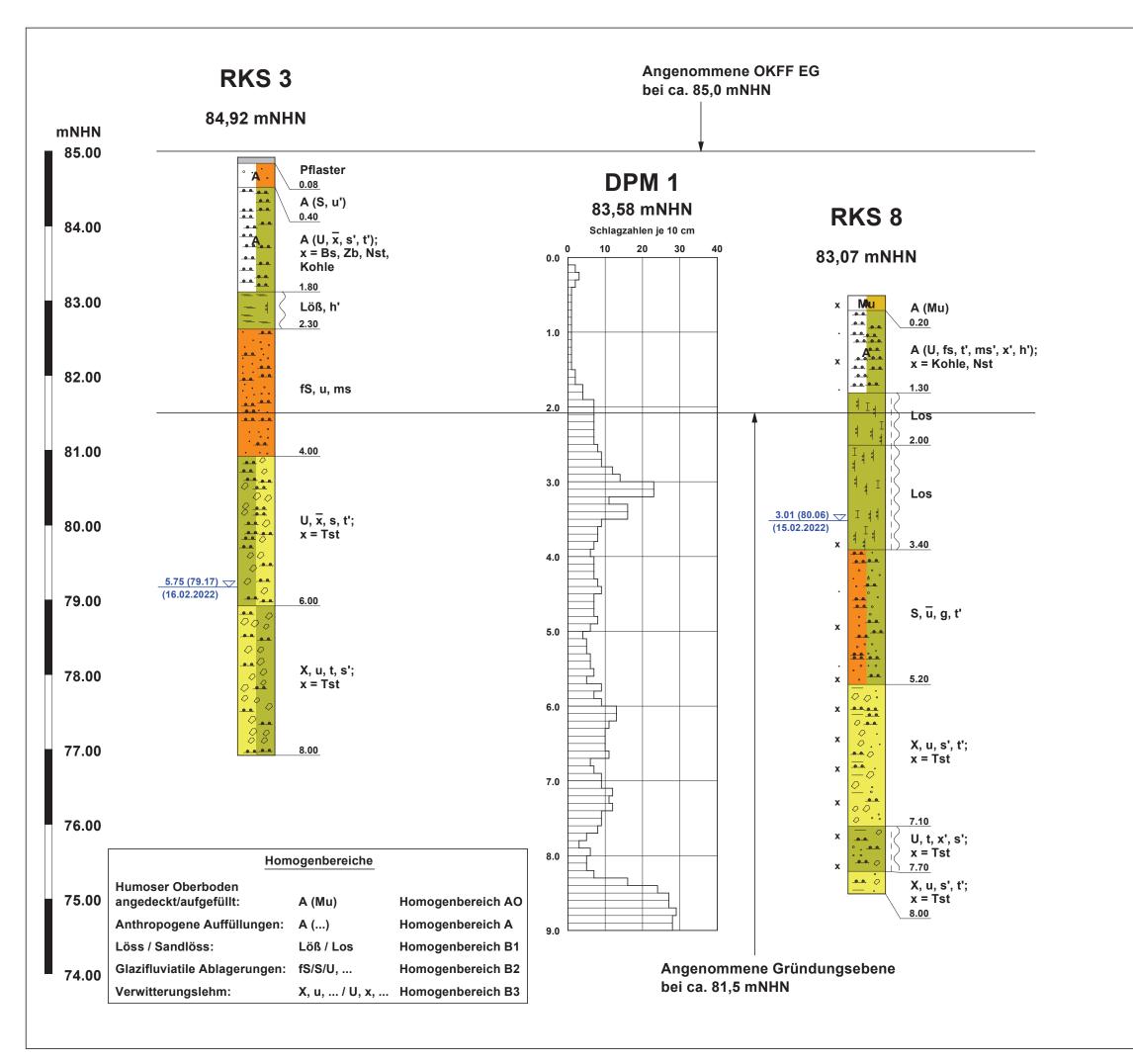

Homogenbereiche **Humoser Oberboden** angedeckt/aufgefüllt: A (Mu) Homogenbereich AO Anthropogene Auffüllungen: A (...) Homogenbereich A Löss / Sandlöss: Löß / Los Homogenbereich B1 Glazifluviatile Ablagerungen: fS/S/U, ... Homogenbereich B2 Verwitterungslehm: X, u, ... / U, x, ... Homogenbereich B3

RKS 2

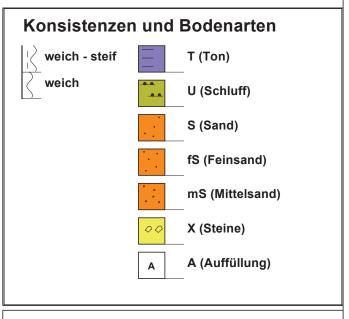
84,89 mNHN


Legende

Abkürzungen


Asph = Asphalt Nst = Naturstein = Beton Sst = Sandstein = Bauschutt Bs GI = Glas x = Steine Ko = Kohle o = Pflanzenreste Kst = Kalkstein = Wurzelreste Schl = Schlacke Scho = Schotter = verwittert Tst = Tonstein v = stark verwittert = Ziegelbruch v' = schwach verwittert = Kanaldeckel mit 85,17 mNHN (vgl. Anlage 1)

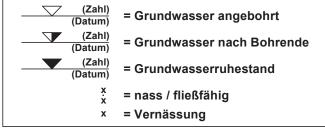
Grundwasser



KBF = Kein Bohrfortschritt möglich

Legende

Ko = Kohle o = Pflanzenreste
Kst = Kalkstein w = Wurzelreste


v' = schwach verwittert

BZP = Kanaldeckel mit 85,17 mNHN (vgl. Anlage 1)

= Ziegelbruch

KBF = Kein Bohrfortschritt möglich

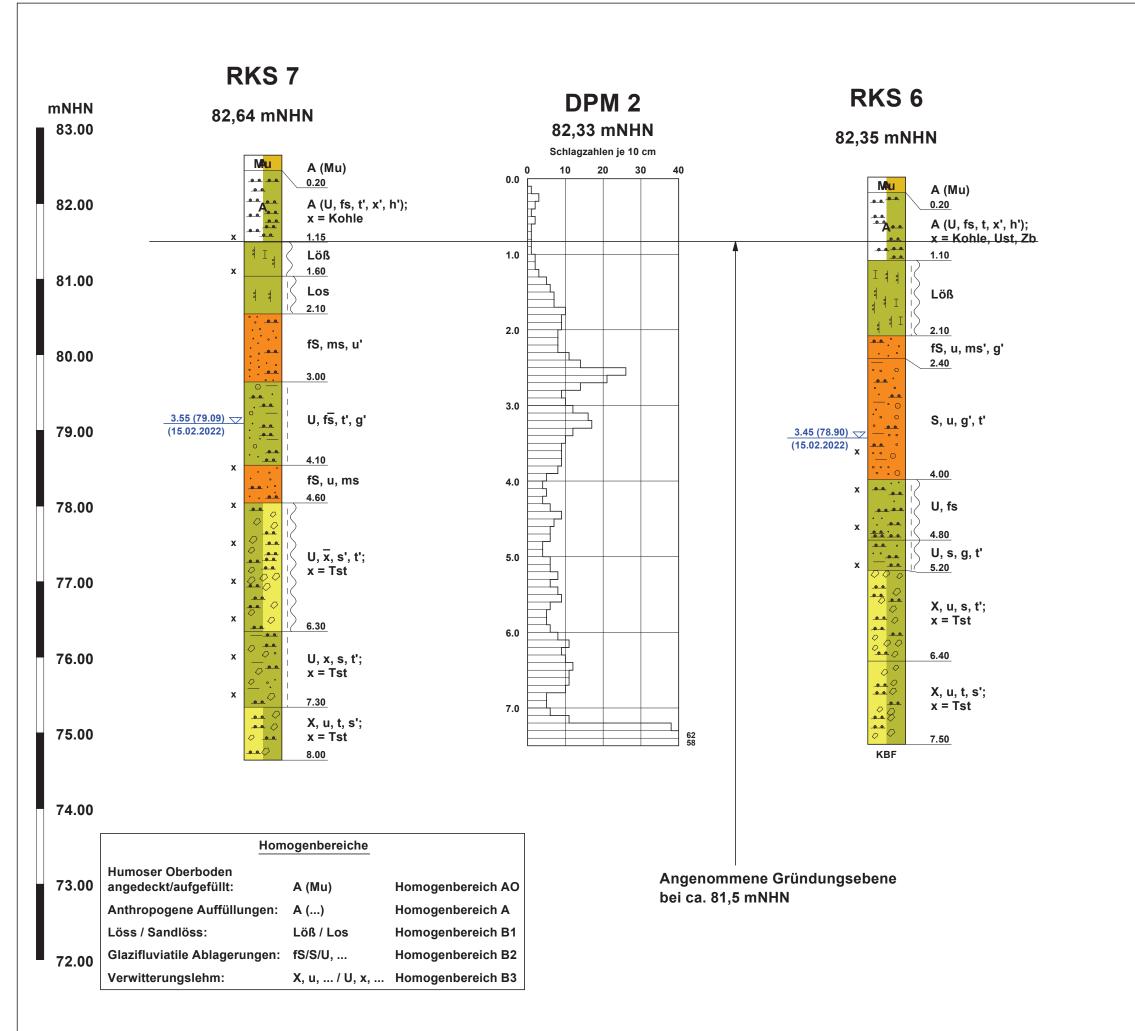
Grundwasser

CT GUTACHTERBÜRO
DIPL.-GEOGR. CARSTEN TEMME
NEULANDSTRASSE 2-4, 49084 OSNABRÜCK
TEL.: 0541/2022722

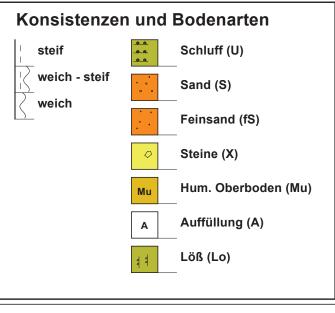
Projekt: Neubau einer Wohnanlage Gesmolder Straße 178

in 49326 Melle

Bauherr: TimCon GmbH & Co. KG


Piesberger Str. 2a in 49090 Osnabrück

Planinhalt: Schichtenprofile RKS 3, RKS 8
Rammdiagramme DPM 1


Projekt-Nr.: 265-02-22 Maßstab: 1:50

Datum: 15.+16.02.2022

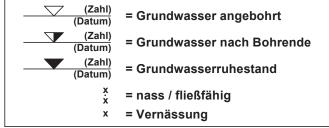
Anlage: 2.2

Legende

GI = Glas x = Steine Ko = Kohle o = Pflanzenreste

Kst = Kalkstein w = Wurzelreste Schl = Schlacke

Scho = Schotter v = verwittert


Tst = Tonstein v = stark verwittert

Zb = Ziegelbruch v' = schwach verwittert

BZP = Kanaldeckel mit 85,17 mNHN (vgl. Anlage 1)

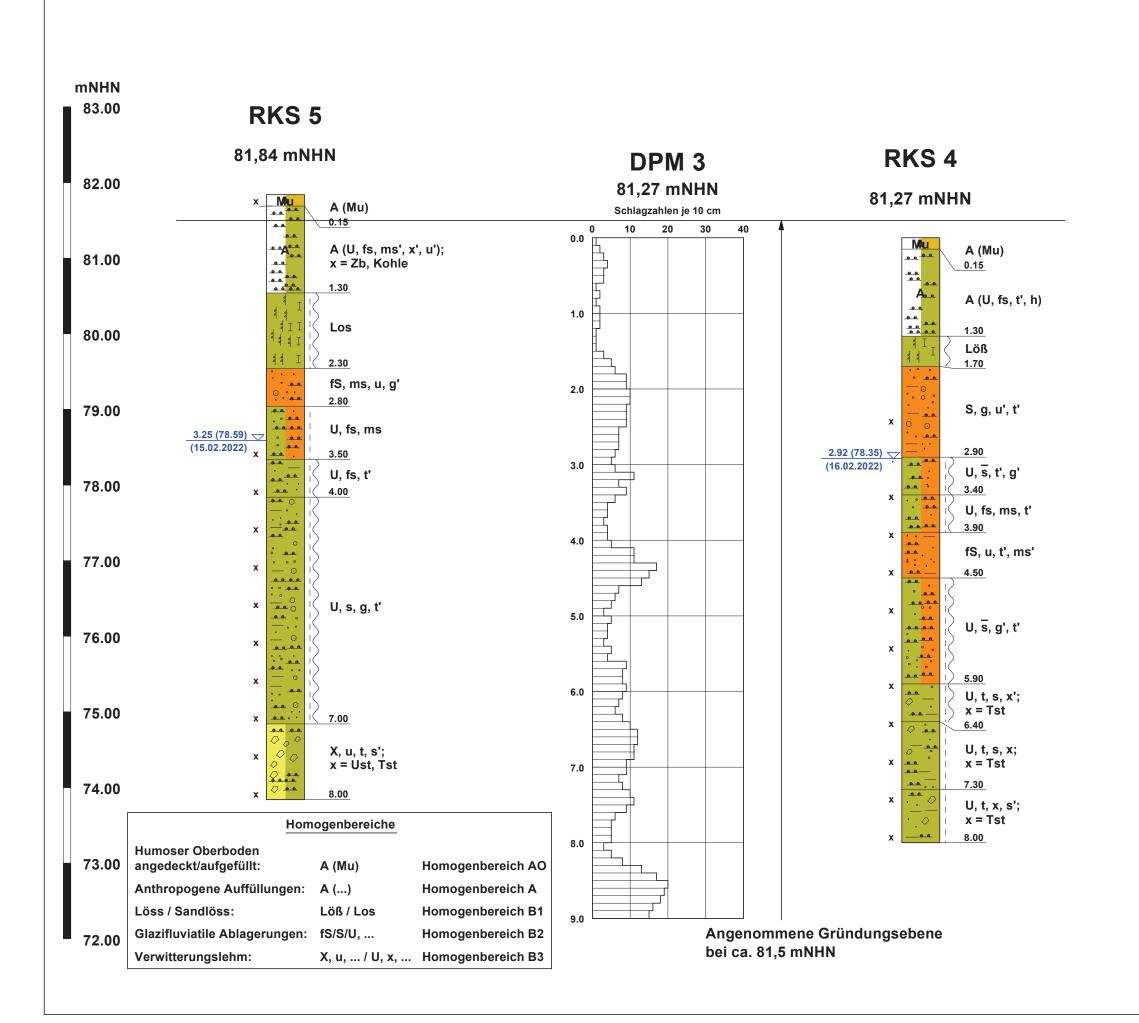
KBF = Kein Bohrfortschritt möglich

Grundwasser

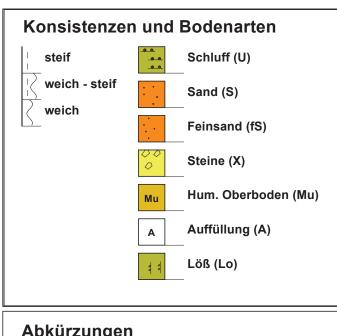
CT GUTACHTERBÜRO
DIPL.-GEOGR. CARSTEN TEMME
NEULANDSTRASSE 2-4, 49084 OSNABRÜCK
TEL.: 0541/2022722

Projekt: Neubau einer Wohnanlage Gesmolder Straße 178

in 49326 Melle


Bauherr: TimCon GmbH & Co. KG

Piesberger Str. 2a in 49090 Osnabrück


Planinhalt: Schichtenprofile RKS 6, RKS 7 Rammdiagramme DPM 2

Projekt-Nr.: 265-02-22 Maßstab: 1 : 50

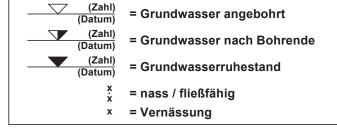
Datum: 15.+16.02.2022 Anlage: 2.3

Legende

GI = Glas x = Steine

Ko = Kohle o = Pflanzenreste
Kst = Kalkstein w = Wurzelreste
Schl = Schlacke

Scho = Schotter v = verwittert


Tst = Tonstein v = stark verwittert

Zb = Ziegelbruch v' = schwach verwittert

BZP = Kanaldeckel mit 85,17 mNHN (vgl. Anlage 1)

KBF = Kein Bohrfortschritt möglich

Grundwasser

DIPL.-GEOGR. CARSTEN TEMME
NEULANDSTRASSE 2-4, 49084 OSNABRÜG
TEL.: 0541/2022722

Projekt: Neubau einer Wohnanlage Gesmolder Straße 178

in 49326 Melle

Bauherr: TimCon GmbH & Co. KG

Piesberger Str. 2a in 49090 Osnabrück

2.4

Planinhalt: Schichtenprofile RKS 4, RKS 5 Rammdiagramme DPM 3

Projekt-Nr.: 265-02-22 Maßstab: 1:50

Datum: 15.+16.02.2022 Anlage:

Anlage 3

Prüfberichte Eurofins Umwelt West GmbH

Seite 1 von 5

Eurofins Umwelt West GmbH - Vorgebirgsstrasse 20 - D-50389 Wesseling

CT Gutachterbüro Neulandstraße 2-4 49084 Osnabrück

Titel: Prüfbericht zu Auftrag 72201948

Prüfberichtsnummer: AR-22-AN-004533-01

Auftragsbezeichnung: Gesmolder Str. 178, Melle

Anzahl Proben: 2

Probenart: Boden

Probenahmedatum: 15.02.2022

Probenehmer: angeliefert vom Auftraggeber

Probeneingangsdatum: 16.02.2022

Prüfzeitraum: 16.02.2022 - 21.02.2022

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Probenahme nicht durch unser Labor oder in unserem Auftrag erfolgte, wird hierfür keine Gewähr übernommen. Die Ergebnisse beziehen sich in diesem Fall auf die Proben im Anlieferungszustand. Dieser Prüfbericht enthält eine qualifizierte elektronische Signatur und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Das beauftragte Prüflaboratorium ist durch die DAkkS nach DIN EN ISO/IEC 17025:2018 DAkkS akkreditiert. Die Akkreditierung gilt nur für den in der Urkundenanlage (D-PL-14078-01-00) aufgeführten Umfang.

Jessica Bossems Digital signiert, 23.02.2022

Prüfleiterin Mark Christjani
Tel. +49 2236 897 202 Prüfleitung

				Probenbezeichnung Probenahmedatum/ -zeit Probennummer		MP Humusbo- den 15.02.2022 722003999	MP Osterfeuer- fläche 15.02.2022 722004000
Parameter	Lab.	Akkr	Methode	BG	Einheit	72200000	72200-1000
Probenvorbereitung Feststo		7					
Probenmenge inkl. Verpackung	AN	RE000 GI	DIN 19747: 2009-07		kg	2,0	1,5
Fremdstoffe (Art)	AN	RE000 GI	DIN 19747: 2009-07			nein	nein
Fremdstoffe (Menge)	AN	RE000 GI	DIN 19747: 2009-07		g	0,0	0,0
Siebrückstand > 10mm	AN	RE000 GI	DIN 19747: 2009-07			nein	nein
Königswasseraufschluss	AN	RE000 GI	DIN EN 13657: 2003-01			Х	Х
Physikalisch-chemische Ke	nngrö	ßen au	ıs der Originalsubs	tanz			
Trockenmasse	AN	RE000 GI	DIN EN 14346: 2007-03	0,1	Ma%	76,7	77,7
pH in CaCl2	AN	RE000 GI	DIN ISO 10390: 2005-12			5,8	6,2
Anionen aus der Originalsu	ostanz	2					
Cyanide, gesamt	AN	RE000 GI	DIN ISO 17380: 2013-10	0,5	mg/kg TS	< 0,5	< 0,5
Elemente aus dem Königsw	asser	aufsch	luss nach DIN EN 1	3657: 2003-0)1#		
Arsen (As)	AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	0,8	mg/kg TS	4,3	5,9
Blei (Pb)	AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	2	mg/kg TS	48	43
Cadmium (Cd)	AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	0,2	mg/kg TS	0,4	0,3
Chrom (Cr)	AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	16	15
Kupfer (Cu)	AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	17	22
Nickel (Ni)	AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	14	12
Quecksilber (Hg)	AN	RE000 GI	DIN EN ISO 12846 (E12): 2012-08	0,07	mg/kg TS	0,09	0,12
Thallium (TI)	AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	0,2	mg/kg TS	< 0,2	< 0,2
Zink (Zn)	AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	101	115
Organische Summenparame	eter au	ıs der	Originalsubstanz				
тос	AN	RE000 GI	DIN EN 15936: 2012-11 (AN,L8: Ver.A; FG,F5: Ver.B)	0,1	Ma% TS	1,9	2,6
EOX	AN	RE000 GI	DIN 38414-17 (S17): 2017-01	1,0	mg/kg TS	< 1,0	< 1,0
Kohlenwasserstoffe C10-C22	AN	RE000 GI	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	< 40	< 40
Kohlenwasserstoffe C10-C40	AN	RE000 GI	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	< 40	< 40
BTEX und aromatische Koh	lenwa	sserst	offe aus der Origina	alsubstanz			
Benzol	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05
Toluol	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05
Ethylbenzol	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05
m-/-p-Xylol	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05
o-Xylol	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05
Summe BTEX	AN	RE000 GI	DIN EN ISO 22155: 2016-07		mg/kg TS	(n. b.) ¹⁾	(n. b.) ¹⁾

				Probenbezei	ichnung	MP Humusbo- den	MP Osterfeuer- fläche
				Probenahme	edatum/ -zeit	15.02.2022	15.02.2022
				Probennumr	ner	722003999	722004000
Parameter	Lab.	Akkr.	Methode	BG	Einheit		
LHKW aus der Originalsubs	tanz			1			
Dichlormethan	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05
trans-1,2-Dichlorethen	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05
cis-1,2-Dichlorethen	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05
Chloroform (Trichlormethan)	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05
1,1,1-Trichlorethan	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05
Tetrachlormethan	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05
Trichlorethen	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05
Tetrachlorethen	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05
1,1-Dichlorethen	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05
1,2-Dichlorethan	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	< 0,05
Summe LHKW (10 Parameter)	AN	RE000 GI	DIN EN ISO 22155: 2016-07		mg/kg TS	(n. b.) 1)	(n. b.) 1)
PAK aus der Originalsubsta	ınz						
Naphthalin	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Acenaphthylen	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Acenaphthen	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Fluoren	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Phenanthren	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,10	< 0,05
Anthracen	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Fluoranthen	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,71	0,26
Pyren	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,52	0,20
Benzo[a]anthracen	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,44	0,17
Chrysen	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,41	0,17
Benzo[b]fluoranthen	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,70	0,26
Benzo[k]fluoranthen	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,21	0,11
Benzo[a]pyren	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,42	0,20
Indeno[1,2,3-cd]pyren	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,29	0,17
Dibenzo[a,h]anthracen	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05
Benzo[ghi]perylen	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,29	0,19
Summe 16 EPA-PAK exkl. BG	AN	RE000 GI	DIN ISO 18287: 2006-05		mg/kg TS	4,09	1,73
Summe 15 PAK ohne Naphthalin exkl. BG	AN	RE000 GI	DIN ISO 18287: 2006-05		mg/kg TS	4,09	1,73

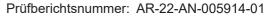
Probenahmedatum/ -zeit 15.02.2022 Probennummer 722003999 Parameter Lab. Akkr. Methode BG Einheit PCB aus der Originalsubstanz	15.02.2022 722004000 < 0,01 < 0,01
Parameter	< 0,01
PCB aus der Originalsubstanz PCB 28 AN RE000 GI DIN EN 15308: 2016-12 0,01 mg/kg TS < 0,01 PCB 52 AN RE000 GI DIN EN 15308: 2016-12 0,01 mg/kg TS < 0,01 PCB 101 AN RE000 GI DIN EN 15308: 2016-12 0,01 mg/kg TS < 0,01 PCB 153 AN RE000 GI DIN EN 15308: 2016-12 0,01 mg/kg TS < 0,01 PCB 138 AN RE000 GI DIN EN 15308: 2016-12 0,01 mg/kg TS < 0,01 PCB 180 AN RE000 GI DIN EN 15308: 2016-12 0,01 mg/kg TS < 0,01 Summe 6 DIN-PCB exkl. BG AN RE000 GI DIN EN 15308: 2016-12 mg/kg TS < 0,01 PCB 118 AN RE000 GI DIN EN 15308: 2016-12 0,01 mg/kg TS < 0,01 Summe PCB (7) AN RE000 GI DIN EN 15308: 2016-12 mg/kg TS < 0,01 Physchem. Kenngrößen aus dem 10:1-Schütteleluat nach DIN EN 12457-4: 2003-01 6,6 Temperatur pH-Wert	
PCB 28 AN RE000 GI DIN EN 15308: 2016-12 0,01 mg/kg TS < 0,01	
PCB 28 AN GI DIN EN 15308: 2016-12 0,01 mg/kg TS < 0,01 PCB 52 AN RE000 GI DIN EN 15308: 2016-12 0,01 mg/kg TS < 0,01	
PCB 101	< 0,01
PCB 101 AN GI DIN EN 15308: 2016-12 0,01 mg/kg TS < 0,01 PCB 153 AN RE000 GI DIN EN 15308: 2016-12 0,01 mg/kg TS < 0,01 PCB 138 AN RE000 GI DIN EN 15308: 2016-12 0,01 mg/kg TS < 0,01 PCB 180 AN RE000 GI DIN EN 15308: 2016-12 0,01 mg/kg TS < 0,01 Summe 6 DIN-PCB exkl. BG AN RE000 GI DIN EN 15308: 2016-12 mg/kg TS (n. b.) 1) PCB 118 AN RE000 GI DIN EN 15308: 2016-12 mg/kg TS < 0,01 Summe PCB (7) AN RE000 DIN EN 15308: 2016-12 mg/kg TS < 0,01 Physchem. Kenngrößen aus dem 10:1-Schütteleluat nach DIN EN 12457-4: 2003-01 PH-Wert AN RE000 DIN EN 150 10523 (C5): GI DIN EN 150 1052	
PCB 153 AN GI DIN EN 15308: 2016-12 0,01 mg/kg TS < 0,01	< 0,01
PCB 138 AN GI DIN EN 15308: 2016-12 0,01 mg/kg TS < 0,01 PCB 180 AN RE0000 GI DIN EN 15308: 2016-12 0,01 mg/kg TS < 0,01	< 0,01
Summe 6 DIN-PCB exkl. BG AN RE000 GI DIN EN 15308: 2016-12 O,01 mg/kg TS < 0,01 PCB 118 AN RE000 GI DIN EN 15308: 2016-12 O,01 mg/kg TS < 0,01 PCB 118 AN RE000 GI DIN EN 15308: 2016-12 O,01 mg/kg TS < 0,01 Summe PCB (7) AN RE000 DIN EN 15308: 2016-12 mg/kg TS (n. b.) 1) Physchem. Kenngrößen aus dem 10:1-Schütteleluat nach DIN EN 12457-4: 2003-01 PH-Wert AN RE000 DIN EN ISO 10523 (C5): 2012-04 GI 1976-12 C22,2 Leitfähigkeit bei 25°C AN RE000 DIN EN 27888 (C8): 1993-11 5 μS/cm G1 Anionen aus dem 10:1-Schütteleluat nach DIN EN 12457-4: 2003-01 Chlorid (CI) AN RE000 DIN EN ISO 10304-1 1.0 mg/l < 1.0 Chlorid (CI) AN RE000 DIN EN ISO 10304-1 1.0 mg/l < 1.0 Chlorid (CI) AN RE000 DIN EN ISO 10304-1 1.0 mg/l < 1.0 Chlorid (CI) AN RE000 DIN EN ISO 10304-1 1.0 mg/l < 1.0 Chlorid (CI) AN RE000 DIN EN ISO 10304-1 1.0 mg/l < 1.0 Chlorid (CI) AN RE000 DIN EN ISO 10304-1 1.0 mg/l < 1.0 Chlorid (CI) AN RE000 DIN EN ISO 10304-1 1.0 mg/l < 1.0 Chlorid (CI) AN RE000 DIN EN ISO 10304-1 1.0 mg/l < 1.0 Chlorid (CI) AN RE000 DIN EN ISO 10304-1 1.0 mg/l < 1.0 Chlorid (CI) AN RE000 DIN EN ISO 10304-1 1.0 mg/l < 1.0 Chlorid (CI) AN RE000 DIN EN ISO 10304-1 1.0 mg/l < 1.0 Chlorid (CI) AN RE000 DIN EN ISO 10304-1 1.0 mg/l < 1.0 Chlorid (CI) CI CI CI CI CI CI CI	< 0,01
PCB 118	< 0,01
PCB 118 AN GI DIN EN 15308: 2016-12 0,01 mg/kg 1S < 0,01 Summe PCB (7) AN RE000 GI DIN EN 15308: 2016-12 mg/kg TS (n. b.) 1) Physchem. Kenngrößen aus dem 10:1-Schütteleluat nach DIN EN 12457-4: 2003-01 pH-Wert AN RE000 DIN EN ISO 10523 (C5): 2012-04 6,6 Temperatur pH-Wert AN RE000 DIN 38404-4 (C4): 1976-12 °C 22,2 Leitfähigkeit bei 25°C AN RE000 DIN EN 27888 (C8): 1993-11 5 μS/cm 61 Anionen aus dem 10:1-Schütteleluat nach DIN EN 12457-4: 2003-01	(n. b.) 1)
Physchem. Kenngrößen aus dem 10:1-Schütteleluat nach DIN EN 12457-4: 2003-01 pH-Wert AN RE000 DIN EN ISO 10523 (C5): 2012-04 6,6 Temperatur pH-Wert AN RE000 DIN EN ISO 10523 (C5): 2012-04 °C 22,2 Leitfähigkeit bei 25°C AN RE000 DIN EN 27888 (C8): 1976-12 5 μS/cm 61 Anionen aus dem 10:1-Schütteleluat nach DIN EN 12457-4: 2003-01	< 0,01
pH-Wert AN RE000 GI 2012-04 DIN EN ISO 10523 (C5): 2012-04 6,6 Temperatur pH-Wert AN RE000 GI 1976-12 °C 22,2 Leitfähigkeit bei 25°C AN RE000 GI 1993-11 5 μS/cm 61 Anionen aus dem 10:1-Schütteleluat nach DIN EN 12457-4: 2003-01 2003-01	(n. b.) 1)
PHVert	
Leitfähigkeit bei 25°C AN RE000 GI 1976-12 C 22,2 Leitfähigkeit bei 25°C AN RE000 GI 1993-11 5 μS/cm 61 Anionen aus dem 10:1-Schütteleluat nach DIN EN 12457-4: 2003-01 Chlorid (CI) AN RE000 DIN EN ISO 10304-1 1 0 mg/l < 1 0	6,8
Anionen aus dem 10:1-Schütteleluat nach DIN EN 12457-4: 2003-01 Chlorid (CI) AN RE000 DIN EN ISO 10304-1 1.0 mg/l < 1.0	22,5
Chlorid (CI) AN RE000 DIN EN ISO 10304-1 1 0 mg/l < 1 0	75
Cn Orig(C)	
GI (D20). 2009-07	< 1,0
Sulfat (SO4) AN RE000 DIN EN ISO 10304-1 [DIO EN ISO 10304-1 [DIO EN ISO 10304-1]] 1,0 mg/l < 1,0	< 1,0
Cyanide, gesamt AN RE000 GI DIN EN ISO 14403-2: 0,005 mg/l < 0,005	< 0,005
Elemente aus dem 10:1-Schütteleluat nach DIN EN 12457-4: 2003-01	
Arsen (As) AN RE000 DIN EN ISO 17294-2 0,001 mg/l 0,002	0,007
Blei (Pb) AN RE000 DIN EN ISO 17294-2 0,001 mg/l 0,004	0,009
Cadmium (Cd) AN RE000 DIN EN ISO 17294-2 0,0003 mg/l < 0,0003	< 0,0003
Chrom (Cr) AN RE000 DIN EN ISO 17294-2 0,001 mg/l < 0,001	0,001
Kupfer (Cu) AN RE000 DIN EN ISO 17294-2 GI (E29): 2017-01 0,005 mg/I 0,008	0,012
Nickel (Ni) AN RE000 DIN EN ISO 17294-2 0,001 mg/l 0,001	0,002
Quecksilber (Hg) AN RE000 DIN EN ISO 12846 (E12): 0,0002 mg/l < 0,0002	< 0,0002
Thallium (TI) AN RE000 DIN EN ISO 17294-2 0,0002 mg/l < 0,0002	< 0,0002
Zink (Zn) AN RE000 DIN EN ISO 17294-2 0,01 mg/l 0,01	0,03
Org. Summenparameter aus dem 10:1-Schütteleluat nach DIN EN 12457-4: 2003-01	
Phenolindex, wasserdampfflüchtig AN RE000 GI DIN EN ISO 14402 (H37): 1999-12 0,01 mg/l < 0,01	< 0,01

Erläuterungen

BG - Bestimmungsgrenze

Lab. - Kürzel des durchführenden Labors

Akkr. - Akkreditierungskürzel des Prüflabors


X - durchgeführt

Aufschluss mittels temperaturregulierendem Graphitblock

Kommentare zu Ergebnissen

Die mit AN gekennzeichneten Parameter wurden von der Eurofins Umwelt West GmbH (Vorgebirgsstrasse 20, Wesseling) analysiert. Die Bestimmung der mit RE000GI gekennzeichneten Parameter ist nach DIN EN ISO/IEC 17025:2018 DAkkS D-PL-14078-01-00 akkreditiert.

¹⁾ nicht berechenbar, da alle Werte < BG.

Seite 1 von 8

Eurofins Umwelt West GmbH - Vorgebirgsstrasse 20 - D-50389 Wesseling

CT Gutachterbüro Neulandstraße 2-4 49084 Osnabrück

Titel: Prüfbericht zu Auftrag 02208114

Prüfberichtsnummer: AR-22-AN-005914-01

Auftragsbezeichnung: Gesmolder Str 178, Melle

Anzahl Proben:

Probenart: Boden

Probenehmer: angeliefert vom Auftraggeber

Probeneingangsdatum: 03.03.2022

Prüfzeitraum: 03.03.2022 - 08.03.2022

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Probenahme nicht durch unser Labor oder in unserem Auftrag erfolgte, wird hierfür keine Gewähr übernommen. Die Ergebnisse beziehen sich in diesem Fall auf die Proben im Anlieferungszustand. Dieser Prüfbericht enthält eine qualifizierte elektronische Signatur und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Das beauftragte Prüflaboratorium ist durch die DAkkS nach DIN EN ISO/IEC 17025:2018 DAkkS akkreditiert. Die Akkreditierung gilt nur für den in der Urkundenanlage (D-PL-14078-01-00) aufgeführten Umfang.

Jessica Bossems Digital signiert, 08.03.2022

Prüfleiterin Jessica Bossems

Tel. +49 2236 897 202 Prüfleitung

					robenbezeichnung		MU 4-6 (0-15/20cm)	Auffüllung West (15/20-115/ 130cm)
-			laa		_	022036011	022036015	022036019
Parameter Factors Factors	Lab.	AKKr.	Methode	BG	Einheit			
Probenvorbereitung Feststo Probenmenge inkl.	те							
Verpackung	AN	RE000 GI	DIN 19747: 2009-07		kg	-	-	4,5
Fremdstoffe (Art)	AN	RE000 GI	DIN 19747: 2009-07			-	-	nein
Fremdstoffe (Menge)	AN	RE000 GI	DIN 19747: 2009-07		g	-	-	0,0
Siebrückstand > 10mm	AN	RE000 GI	DIN 19747: 2009-07			-	-	nein
Königswasseraufschluss	AN	RE000 GI	DIN EN 13657: 2003-01			-	-	Х
Physikalisch-chemische Ker	nngrö	ßen au	ıs der Originalsubs	tanz				
Trockenmasse	AN	RE000 GI	DIN EN 14346: 2007-03	0,1	Ma%	75,9	72,6	81,7
Anionen aus der Originalsul	bstanz				I	1		
Cyanide, gesamt	AN	RE000 GI	DIN ISO 17380: 2013-10	0,5	mg/kg TS	-	-	< 0,5
Elemente aus dem Königsw	asser	aufsch	luss nach DIN EN 1	3657: 2003-0	1#			
Arsen (As)	AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	0,8	mg/kg TS	-	-	4,0
Blei (Pb)	AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	2	mg/kg TS	-	-	30
Cadmium (Cd)	AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	0,2	mg/kg TS	-	-	0,3
Chrom (Cr)	AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	-	-	15
Kupfer (Cu)	AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	-	-	22
Nickel (Ni)	AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	-	-	11
Quecksilber (Hg)	AN	RE000 GI	DIN EN ISO 12846 (E12): 2012-08	0,07	mg/kg TS	-	-	0,07
Thallium (TI)	AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	0,2	mg/kg TS	-	-	< 0,2
Zink (Zn)	AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	-	-	84
Organische Summenparame	eter au	ıs der	Originalsubstanz					
тос	AN	RE000 GI	DIN EN 15936: 2012-11 (AN,L8: Ver.A; FG,F5: Ver.B)	0,1	Ma% TS	-	-	1,0
EOX	AN	RE000 GI	DIN 38414-17 (S17): 2017-01	1,0	mg/kg TS	-	-	< 1,0
Kohlenwasserstoffe C10-C22	AN	RE000 GI	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	-	-	< 40
Kohlenwasserstoffe C10-C40	AN	RE000 GI	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	-	-	< 40
BTEX und aromatische Koh	lenwa	sserst	offe aus der Origina	alsubstanz				
Benzol	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	-	-	< 0,05
Toluol	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	-	-	< 0,05
Ethylbenzol	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	-	-	< 0,05
m-/-p-Xylol	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	-	-	< 0,05
o-Xylol	AN	GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	-	-	< 0,05
Summe BTEX	AN	RE000 GI	DIN EN ISO 22155: 2016-07		mg/kg TS	-	-	(n. b.) ¹⁾

				Probennumi		MU 2,7,8 (0-15/20cm)	MU 4-6 (0-15/20cm) 022036015	Auffüllung West (15/20-115/ 130cm) 022036019
Damamatan	l ab	Alden	Madeada			022036011	022030015	022036019
Parameter	Lab.	AKKr.	Methode	BG	Einheit			
LHKW aus der Originalsubs	1	RE000	DIN EN ISO 22155:		"			0.05
Dichlormethan	AN	GI	2016-07	0,05	mg/kg TS	-	-	< 0,05
trans-1,2-Dichlorethen	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	-	-	< 0,05
cis-1,2-Dichlorethen	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	-	-	< 0,05
Chloroform (Trichlormethan)	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	-	-	< 0,05
1,1,1-Trichlorethan	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	-	-	< 0,05
Tetrachlormethan	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	-	-	< 0,05
Trichlorethen	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	-	-	< 0,05
Tetrachlorethen	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	-	-	< 0,05
1,1-Dichlorethen	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	-	-	< 0,05
1,2-Dichlorethan	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	-	-	< 0,05
Summe LHKW (10 Parameter)	AN	RE000 GI	DIN EN ISO 22155: 2016-07		mg/kg TS	-	-	(n. b.) 1)
PAK aus der Originalsubsta	nz			•				
Naphthalin	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Acenaphthylen	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Acenaphthen	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Fluoren	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Phenanthren	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,08	0,16	< 0,05
Anthracen	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	0,08	< 0,05
Fluoranthen	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,15	0,96	0,29
Pyren	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,12	0,70	0,22
Benzo[a]anthracen	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,09	0,54	0,17
Chrysen	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,09	0,50	0,14
Benzo[b]fluoranthen	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,21	0,91	0,36
Benzo[k]fluoranthen	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	0,29	0,14
Benzo[a]pyren	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,11	0,52	0,21
Indeno[1,2,3-cd]pyren	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,12	0,56	0,13
Dibenzo[a,h]anthracen	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05	0,11	< 0,05
Benzo[ghi]perylen	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,07	0,32	0,15
Summe 16 EPA-PAK exkl. BG	AN	RE000 GI	DIN ISO 18287: 2006-05		mg/kg TS	1,04	5,65	1,81
Summe 15 PAK ohne Naphthalin exkl. BG	AN	RE000 GI	DIN ISO 18287: 2006-05		mg/kg TS	1,04	5,65	1,81

			Probenbeze	chnung	MU 2,7,8 (0-15/20cm)	MU 4-6 (0-15/20cm)	Auffüllung West (15/20-115/ 130cm)
			Probennum	ner	022036011	022036015	022036019
Lab.	Akkr.	Methode	BG	Einheit			
nz							
AN	RE000 GI	DIN EN 15308: 2016-12	0,01	mg/kg TS	-	-	< 0,01
AN	RE000 GI	DIN EN 15308: 2016-12	0,01	mg/kg TS	-	-	< 0,01
AN	RE000 GI	DIN EN 15308: 2016-12	0,01	mg/kg TS	-	-	< 0,01
AN	RE000 GI	DIN EN 15308: 2016-12	0,01	mg/kg TS	-	-	< 0,01
AN	RE000 GI	DIN EN 15308: 2016-12	0,01	mg/kg TS	-	-	< 0,01
AN	RE000 GI	DIN EN 15308: 2016-12	0,01	mg/kg TS	-	-	< 0,01
AN	RE000 GI	DIN EN 15308: 2016-12		mg/kg TS	-	-	(n. b.) 1)
AN	RE000 GI	DIN EN 15308: 2016-12	0,01	mg/kg TS	-	-	< 0,01
AN	RE000 GI	DIN EN 15308: 2016-12		mg/kg TS	-	-	(n. b.) 1)
ıs den	່ າ 10:1-	Schütteleluat nach	DIN EN 1245	7-4: 2003-01	I		
AN	RE000 GI	DIN EN ISO 10523 (C5): 2012-04			-	-	7,9
AN	RE000 GI	DIN 38404-4 (C4): 1976-12		°C	-	-	17,5
AN	RE000 GI	DIN EN 27888 (C8): 1993-11	5	μS/cm	-	-	37
ittelelu	iat nac	h DIN EN 12457-4:	2003-01	I			
AN	RE000 GI	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	-	-	< 1,0
AN	RE000 GI	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	-	-	< 1,0
AN	RE000 GI	DIN EN ISO 14403-2: 2012-10	0,005	mg/l	-	-	< 0,005
üttele	uat na	ch DIN EN 12457-4	: 2003-01		I.		
AN	RE000 GI		0,001	mg/l	-	-	0,002
AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	-	-	0,003
AN	RE000 GI		0,0003	mg/l	-	-	< 0,0003
AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	-	-	< 0,001
AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	0,005	mg/l	-	-	0,008
AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	-	-	0,001
AN	RE000 GI	DIN EN ISO 12846 (E12): 2012-08	0,0002	mg/l	-	-	< 0,0002
AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	0,01	mg/l	-	-	< 0,01
dem	10:1-S	chütteleluat nach D	IN EN 12457	-4: 2003-01	1		
AN	RE000 GI	DIN EN ISO 14402 (H37): 1999-12	0,01	mg/l	-	-	< 0,01
	AN A	AN	AN RE000 DIN EN 15308: 2016-12 AN RE000 GI DIN EN 15308: 2016-12 AN RE000 GI DIN EN 15308: 2016-12 AN RE000 DIN EN 150 10523 (C5): 2012-04 AN RE000 DIN EN 27888 (C8): GI 1976-12 AN RE000 DIN EN 12457-4: AN RE000 DIN EN 1SO 10304-1 (D20): 2009-07 AN RE000 DIN EN ISO 10304-1 (D20): 2009-07 AN RE000 DIN EN ISO 10304-1 (D20): 2009-07 AN RE000 DIN EN ISO 17294-2 (E29): 2017-01	Probennumman	AN RE000 DIN EN 15308: 2016-12 0,01 mg/kg TS AN RE000 DIN EN 15308: 2016-12 0,01 mg/kg TS AN RE000 DIN EN 15308: 2016-12 0,01 mg/kg TS AN RE000 DIN EN 15308: 2016-12 0,01 mg/kg TS AN RE000 DIN EN 15308: 2016-12 0,01 mg/kg TS AN RE000 DIN EN 15308: 2016-12 0,01 mg/kg TS AN RE000 DIN EN 15308: 2016-12 0,01 mg/kg TS AN RE000 DIN EN 15308: 2016-12 0,01 mg/kg TS AN RE000 DIN EN 15308: 2016-12 mg/kg TS AN RE000 DIN EN 15308: 2016-12 mg/kg TS AN RE000 DIN EN 15308: 2016-12 mg/kg TS mg/kg TS AN RE000 DIN EN 15308: 2016-12 mg/kg TS mg/	Probennummer Q22036011	Probennummer Q22036011 Q22036015

				Probenbezeichnung		Auffüllung Ost (15/40-110/ 180cm)	
[n. /			lan () .	Probennum	_	022036023	
Prohamier Footste	Lab.	AKKr.	Methode	BG	Einheit		
Probenvorbereitung Feststo Probenmenge inkl.	Пе						
Verpackung	AN	RE000 GI	DIN 19747: 2009-07		kg	4,5	
Fremdstoffe (Art)	AN	RE000 GI	DIN 19747: 2009-07			nein	
Fremdstoffe (Menge)	AN	RE000 GI	DIN 19747: 2009-07		g	0,0	
Siebrückstand > 10mm	AN	RE000 GI	DIN 19747: 2009-07			nein	
Königswasseraufschluss	AN	RE000 GI	DIN EN 13657: 2003-01			X	
Physikalisch-chemische Kei	nngrö	ßen au	ıs der Originalsubs	tanz			
Trockenmasse	AN	RE000 GI	DIN EN 14346: 2007-03	0,1	Ma%	83,2	
Anionen aus der Originalsul	ostanz	z					
Cyanide, gesamt	AN	RE000 GI	DIN ISO 17380: 2013-10	0,5	mg/kg TS	< 0,5	
Elemente aus dem Königsw	asser	aufsch	luss nach DIN EN 1	13657: 2003-	01#		
Arsen (As)	AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	0,8	mg/kg TS	4,3	
Blei (Pb)	AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	2	mg/kg TS	22	
Cadmium (Cd)	AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	0,2	mg/kg TS	< 0,2	
Chrom (Cr)	AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	13	
Kupfer (Cu)	AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	19	
Nickel (Ni)	AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	10	
Quecksilber (Hg)	AN	RE000 GI	DIN EN ISO 12846 (E12): 2012-08	0,07	mg/kg TS	< 0,07	
Thallium (TI)	AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	0,2	mg/kg TS	< 0,2	
Zink (Zn)	AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	1	mg/kg TS	62	
Organische Summenparame	eter a	us der	Originalsubstanz				
тос	AN	RE000 GI	DIN EN 15936: 2012-11 (AN,L8: Ver.A; FG,F5: Ver.B)	0,1	Ma% TS	0,9	
EOX	AN	RE000 GI	DIN 38414-17 (S17): 2017-01	1,0	mg/kg TS	< 1,0	
Kohlenwasserstoffe C10-C22	AN	RE000 GI	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	< 40	
Kohlenwasserstoffe C10-C40	AN	RE000 GI	DIN EN 14039: 2005-01/LAGA KW/04: 2019-09	40	mg/kg TS	< 40	
BTEX und aromatische Koh	lenwa	sserst	offe aus der Origina	alsubstanz			
Benzol	AN		DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	
Toluol	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	
Ethylbenzol	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	
m-/-p-Xylol	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	
o-Xylol	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05	
Summe BTEX	AN	RE000 GI	DIN EN ISO 22155: 2016-07		mg/kg TS	(n. b.) 1)	

				Probenbeze Probennum		Auffüllung Ost (15/40-110/ 180cm) 022036023
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
LHKW aus der Originalsubs	tanz					
Dichlormethan	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
trans-1,2-Dichlorethen	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
cis-1,2-Dichlorethen	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
Chloroform (Trichlormethan)	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
1,1,1-Trichlorethan	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
Tetrachlormethan	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
Trichlorethen	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
Tetrachlorethen	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
1,1-Dichlorethen	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
1,2-Dichlorethan	AN	RE000 GI	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
Summe LHKW (10 Parameter)	AN	RE000 GI	DIN EN ISO 22155: 2016-07		mg/kg TS	(n. b.) 1)
PAK aus der Originalsubsta	ınz					
Naphthalin	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Acenaphthylen	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Acenaphthen	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Fluoren	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Phenanthren	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Anthracen	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Fluoranthen	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,10
Pyren	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,07
Benzo[a]anthracen	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Chrysen	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Benzo[b]fluoranthen	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	0,08
Benzo[k]fluoranthen	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Benzo[a]pyren	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Indeno[1,2,3-cd]pyren	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Dibenzo[a,h]anthracen	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Benzo[ghi]perylen	AN	RE000 GI	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Summe 16 EPA-PAK exkl. BG	AN	RE000 GI	DIN ISO 18287: 2006-05		mg/kg TS	0,25
Summe 15 PAK ohne Naphthalin exkl. BG	AN	RE000 GI	DIN ISO 18287: 2006-05		mg/kg TS	0,25

				Probenbezeichnung		Auffüllung Ost (15/40-110/ 180cm)
Darramatar	1 -1-	A Islan	Methode	Probennum	-	022036023
Parameter PCB aus der Originalsubsta	Lab.	AKKr.	wethode	BG	Einheit	
PCB 28	AN	RE000	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0.01
		GI RE000		,	0 0	,
PCB 52	AN	GI RE000	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01
PCB 101	AN	GI	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01
PCB 153	AN	RE000 GI	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01
PCB 138	AN	RE000 GI	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01
PCB 180	AN	RE000 GI	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01
Summe 6 DIN-PCB exkl. BG	AN	RE000 GI	DIN EN 15308: 2016-12		mg/kg TS	(n. b.) 1)
PCB 118	AN	RE000 GI	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01
Summe PCB (7)	AN	RE000 GI	DIN EN 15308: 2016-12		mg/kg TS	(n. b.) 1)
Physchem. Kenngrößen au	us den	n 10:1-	Schütteleluat nach	DIN EN 1245	7-4: 2003-01	
pH-Wert	AN	RE000 GI	DIN EN ISO 10523 (C5): 2012-04			8,5
Temperatur pH-Wert	AN	RE000 GI	DIN 38404-4 (C4): 1976-12		°C	17,0
Leitfähigkeit bei 25°C	AN	RE000 GI	DIN EN 27888 (C8): 1993-11	5	μS/cm	62
Anionen aus dem 10:1-Schü	ittelelı	uat nac	h DIN EN 12457-4:	2003-01		
Chlorid (CI)	AN	RE000 GI	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	< 1,0
Sulfat (SO4)	AN	RE000 GI	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	< 1,0
Cyanide, gesamt	AN	RE000 GI	DIN EN ISO 14403-2: 2012-10	0,005	mg/l	< 0,005
Elemente aus dem 10:1-Sch	üttele	luat na	ch DIN EN 12457-4	: 2003-01	l	
Arsen (As)	AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	0,003
Blei (Pb)	AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Cadmium (Cd)	AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	0,0003	mg/l	< 0,0003
Chrom (Cr)	AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Kupfer (Cu)	AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	0,005	mg/l	< 0,005
Nickel (Ni)	AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Quecksilber (Hg)	AN	RE000 GI	DIN EN ISO 12846 (E12): 2012-08	0,0002	mg/l	< 0,0002
Zink (Zn)	AN	RE000 GI	DIN EN ISO 17294-2 (E29): 2017-01	0,01	mg/l	< 0,01
Org. Summenparameter aus	dem	10:1-S	chütteleluat nach E	DIN EN 12457-	4: 2003-01	
Phenolindex, wasserdampfflüchtig	AN	RE000 GI	DIN EN ISO 14402 (H37): 1999-12	0,01	mg/l	< 0,01

Erläuterungen

BG - Bestimmungsgrenze

Lab. - Kürzel des durchführenden Labors

Akkr. - Akkreditierungskürzel des Prüflabors

X - durchgeführt

Aufschluss mittels temperaturregulierendem Graphitblock

Kommentare zu Ergebnissen

Die mit AN gekennzeichneten Parameter wurden von der Eurofins Umwelt West GmbH (Vorgebirgsstrasse 20, Wesseling) analysiert. Die Bestimmung der mit RE000GI gekennzeichneten Parameter ist nach DIN EN ISO/IEC 17025:2018 DAkkS D-PL-14078-01-00 akkreditiert.

¹⁾ nicht berechenbar, da alle Werte < BG.

Anlage 4

Protokolle

Anlage 4.1

Messprotokolle Bodenluft

CT GUTACHTERBÜRO

GEBÄUDESCHADSTOFF- UND BODENUNTERSUCHUNGEN

Prob	enahmep	rotokoll			Boden	luf	(gem. VDI 3865-2)		
Auftraggeber			TimCon GmbH & Co. KG, Piesberger Str. 2a, 49090 Osnabrück						265-02-22
	hnung des F	Projektes	Orientierende Bodenuntersuchungen Gesmolder Str. 176, Melle					Anlage	4.1
Probei	nahme durch	1	CT Gutacht	erbüro	_			Datum	17.02.2022
Bezeichnung d. Messstelle			RKS 1						
Entnahmestelle			Bohrloch	RKS 1				Rechtswert	
Entnahmeort			Gesmold	er Str.	178, Melle			Hochwert Höhe GOK	
	Entnahmeste	lle	Bohrloch	0. 0				Höhe POK	
Typ/He				10. Geot	ech BIOGAS 5000. PF	PID-G0 vo	n ACI (Analytical Control Ins	+	H)
Sondenteilstücke (Länge, Stk.)		1m, 1 Stk.	,			Totvolumen d. Sonde	0,5	,	
Verhältnis Ø Bohrloch/Sonde		50mm/30m	m			Sondendurchmesser	25	mm	
Art der oberfl. Abdichtung			Gummipac		-	ļ.			ļ ·····
Filterla				bis	m u. POK				
	metiefe		1,0	m u. POł	<u> </u>				
Bohrlochsohle		3,0	m u. GOł	<					
Probenahmeverfahren/-gefäß		_							
Angabe	en zu verwend	letem Packer	s.o.						
mit d. S	Sonde zuvor e	ntn. Probe	-						
Pumpd	auer bis Prob	enahme/Messung	10	min			Absaugungsdauer f.d. Pro	obenahme	- min
Förderstrom			1,6	l/min			Ges. Entnahmevol.		16,0
Probenvolumen			-	ml			Unterdruck		0,1 bar
Anmerl	kung zur Prob	enahme							
Rel. Luftfeuchte		61,0	%			Lufttemperatur (Außenluft	:)	10 °C	
Luftdru	ck		1002	hPa			Lufttemperatur (Boden)		- °C
Messu	ıngen vor O	rt	Messsyste	m Nr:					
Uhr- zeit	Sauerstoff	Kohlendioxid	Methan	PID					
	%	%	%	ppm		•			
14:00	18,3	1,4	0,0	< 0,1					
Analy	senparamet	er	Probentr	anspor	t/Lagerung	Proben	bezeichnung		
-									
Die Pro	obenahme un	d obige Arbeit ha	ben ausgef	ührt:		Probene	ingang Labor bestätigt d	urch:	
Datum,	Name	17.02.2022			C. Temme	-			
Bemer	kungen	keine Probe entno	mmen			I			
25.7101	9011	TODO OTATIO							

CT GUTACHTERBÜRO

GEBÄUDESCHADSTOFF- UND BODENUNTERSUCHUNGEN

Prob	enahmep	rotokoll			Boden	luf	(gem. VDI 3865-2)		
Auftraggeber			TimCon GmbH & Co. KG, Piesberger Str. 2a, 49090 Osnabrück						265-02-22
	hnung des F	rojektes	Orientierende Bodenuntersuchungen Gesmolder Str. 176, Melle					Anlage	4.2
Prober	nahme durch	<u>-</u>	CT Gutacht	erbüro	-			Datum	17.02.2022
Bezeichnung d. Messstelle			RKS 2						
Entnahmestelle			Bohrloch	RKS 2	!			Rechtswert	
Entnahmeort		Gosmold	lor Str	178, Melle			Hochwert Höhe GOK		
	Entnahmeste	llo.	Bohrloch	er Su.	176, Welle			Höhe POK	
		ile		10 Coot	ach PIOCAS FOOD DI	DID CO.vo	n ACI (Analytical Control Inc	+	LIV.
Typ/Hersteller			10, Geot	ech Biogas 5000, Pi	PID-GU VO	n ACI (Analytical Control Ins Totvolumen d. Sonde			
Sondenteilstücke (Länge, Stk.)		1m, 1 Stk.					0,5	I	
Verhältnis Ø Bohrloch/Sonde			50mm/30m				Sondendurchmesser	25	mm
Art der oberfl. Abdichtung Filterlage		itung	Gummipac	ker bis	m u. POK				
Entnah	,		1,0	m u. POł					
Bohrlochsohle			3,0	m u. GOI					
Probenahmeverfahren/-gefäß		-	4. 00.						
Angaben zu verwendetem Packer		ū	s.o.						
_	Sonde zuvor e		-						
		enahme/Messung	10	min			Absaugungsdauer f.d. Pro	obenahme	- min
Förderstrom			1,6	l/min			Ges. Entnahmevol.		16,0
Probenvolumen			-	ml			Unterdruck		0,1 bar
	kung zur Prob	enahme					o.noraraon		0, 1 2 a
	ftfeuchte		61,0	%			Lufttemperatur (Außenluft	•)	10 °C
Luftdruck			1002	hPa			Lufttemperatur (Boden)	.,	- °C
			ı				,		l
Messu	ıngen vor O	rt	Messsyste	m Nr:					
Uhr- zeit	Sauerstoff	Kohlendioxid	Methan	PID					
	%	%	%	ppm		7			
14:15	20,3	2,4	0,0	< 0,1					
Analys	senparamet	er	Probentr	anspor	t/Lagerung	Proben	bezeichnung		
-									
			•			•			
Die Pro	obenahme un	d obige Arbeit hal	ben ausgef	ührt:		Probene	ingang Labor bestätigt d	urch:	
Datum,	Name	17.02.2022			C. Temme				
Bemer	kungen	keine Probe entno	mmen			<u>I</u>			
	···• •···								
		•							

CT GUTACHTERBÜRO

GEBÄUDESCHADSTOFF- UND BODENUNTERSUCHUNGEN

Prob	enahmep	rotokoll			Boden	luf	(gem. VDI 3865-2)		
Auftraggeber			TimCon GmbH & Co. KG, Piesberger Str. 2a, 49090 Osnabrück						265-02-22
_	hnung des F	rojektes	Orientierende Bodenuntersuchungen Gesmolder Str. 176, Melle					Anlage	4.3
Prober	ahme durch	•	CT Gutacht	erbüro	_			Datum	17.02.2022
Bezeichnung d. Messstelle			RKS 3						
Entnahmestelle			Bohrloch	RKS 3				Rechtswert	
Entnahmeort			Gosmold	or Str	178, Melle			Hochwert Höhe GOK	
_	Entnahmeste	llo.	Bohrloch	ei Sii.	170, Welle			Höhe POK	
Typ/Hei		ile		10 Coot	ach PIOCAS FOOD DE	DID CO vo	n ACI (Analytical Control Inc		U\
Sondenteilstücke (Länge, Stk.)		Honold G 110, Geotech BIOGAS 5000, PPID-G0 von ACI (Analytical Control Ins 1m, 1 Stk. Totvolumen d. Sonde					0,5	n)	
Verhältnis Ø Bohrloch/Sonde		1m, 1 Stk. 50mm/30m	m			Sondendurchmesser	25		
Art der oberfl. Abdichtung						ļ	Sondendurchmesser	23	mm
Filterlage		iturig	Gummipac	bis	m u. POK				
Entnahi			1,0	m u. POk	<u> </u>				
Bohrlochsohle			8,0	m u. GOł					
Probenahmeverfahren/-gefäß									
Angaben zu verwendetem Packer		S.O.							
mit d. S	onde zuvor e	ntn. Probe	-						
Pumpda	auer bis Prob	enahme/Messung	10	min			Absaugungsdauer f.d. Pro	obenahme	- min
Förderstrom			1,6	l/min			Ges. Entnahmevol.		16,0
Probenvolumen			-	ml			Unterdruck		0,1 bar
Anmerk	ung zur Prob	enahme							
Rel. Luf	tfeuchte		61,0	%			Lufttemperatur (Außenluf	t)	10 ℃
Luftdruck			1002	hPa			Lufttemperatur (Boden)		- °C
Messu	ngen vor O	rt	Messsyste	m Nr:					
Uhr-	Sauerstoff	Kohlendioxid	Methan	PID					
zeit	%	%	%	ppm	_				
	70	70	70	ppiii		Ī			
14:30	20,7	0,9	0,0	< 0,1					
Analys	senparameto	er	Probentr	anspor	t/Lagerung	Proben	bezeichnung		
-									
D. D.		1.11				D			
		d obige Arbeit hal	oen ausgef	unft:		Propene	ingang Labor bestätigt d	urcn:	
Datum,	Name	17.02.2022			C. Temme	-			
Bemer	kungen	keine Probe entno	mmen						

Anlage 4.2

Probenahmeprotokolle Oberboden

CT

GUTACHTERBÜRO - DIPL.-GEOGR. CARSTEN TEMME

GEBÄUDESCHADSTOFF- UND BODENUNTERSUCHUNGEN

Probenahmeprotokoll Feststoff / Material

Auftraggeber:	TimCon Gmb	H & Co. KG, Pi	Datum: 15.02.2022 Uhrzeit: 8:30			
Projekt:	Neubau einer	Wohnanlage				02-22
Objekt / Lage			tr. 178, 49326	Melle		
Art des Abfall ☐ Bauschutt ☒ Boden ☐ Asphalt Abfallerzeuge	☐ Ho ☐ Re ☐ Asp	z cyclingschotte bhaltfräsgut	Grund der Probenahme: ☐ Routineüberwachung ☐ Deklaration ☐ unbekannt			
Herkunft des Abbruch Aushub Aufbruch Volumen: n.b.	☐ vor ☐ unb ☑ noc	Ort zwischeng bekannt ch eingebaut	Vermutete Schadstoffe: ☐ unbekannt ☐ PAK ☐ Mineralöl/Benzin Lagerungsart: ☐ Halde ☐ Container ☐ eingebaut	Aromaten CKW Abdeckung: ohne Folie/Plane Deckel		
Farbe:	dunkelbraun				Lagerungsdauer:	> 1 Jahr
Geruch:	ohne				Witterungseinflüsse:	ja
Körnung: ⊠ körnig □ schlammig		Konsi ⊠ fes ⊟ flüs	Homogenität: ☐ homogen ☑ inhomogen	,		
Angaben zur Probenahme Entnahme mittels: Probenahmegerät: □ Bohrstock □ Hammer und Meißel □ Schürfschlitz □ Schaufel/Handschaufel □ Rammkernsondierung □ Spatel				Verjüngung durch: ☐ fraktioniertes schaufeln ☐ aufkegeln und vierteln (Probenahmekreuz) ☐		
Probenahmev Korngröße [m	nm]	⊠ 0,5 □ 1 □ 2 □ 5	n en Einzelpro		Volumen Laborprobe [l]: □ 1 □ 2 □ 4 □ 10 □ Stück=Einzelprobe	
Anzahl der en			•			
- 5m³ - 30m³ - 60m³ - 100m³ - 150m³ - 200m³ - 300m³ - 300m³ - 400m³ - 500m³ - 500m³ - 600m³ - 800m³ Probengefäße	ort:	Anzahl Mischpr. 1	☐ kühl	Anzahl Laborpr.	Probenbezeichnung: "MP Osterfeuerfläc Schluff, sandig, humos (O Grasnarbe), einzelne Kohl Stück Ziegelbruch	berboden mit
(Skizze / Foto)	1				T.,	
Probenehmer DiplGeogr. C			(\	Jenne	Untersuchendes Labor: Eurofins Umwelt West GmbH	l, Wesseling
			C. \			

CT

GUTACHTERBÜRO - DIPL.-GEOGR. CARSTEN TEMME

GEBÄUDESCHADSTOFF- UND BODENUNTERSUCHUNGEN

Probenahmeprotokoll Feststoff / Material

Auftraggeber: TimC	on GmbH & Co.	KG, Piesberger Str.	2a, 49090 Osnabrück	Datum: 15.02.2022	
5 111				Uhrzeit: 9:00	20.00
	au einer Wohna			Projektnummer: 265-	-02-22
Objekt / Lage / Bet	reiber: Gesmo	older Str. 178, 49326	Melle		
Art des Abfalls:				Grund der Probenahme	:
☐ Bauschutt	☐ Holz			☐ Routineüberwachung	
Boden	☐ Recyclings	chotter		□ Deklaration	
☐ Asphalt	☐ Asphaltfräs	sgut		unbekannt	
Abfallerzeuger:	s.o.				
Herkunft des Abfa	le.			Vermutete Schadstoffe:	
☐ Abbruch	-	schengelagert		unbekannt	☐ Aromaten
☐ Aushub	unbekannt			PAK	CKW
Aufbruch	noch einge	☐ Mineralöl/Benzin			
Volumen: n.b.				Lagerungsart:	Abdeckung:
Volumen. n.b.				Halde	ohne
				Container	☐ Folie/Plane
				eingebaut	☐ Deckel
Farbe: dunke	elbraun			Lagerungsdauer:	> 1 Jahr
Geruch: ohne	, ibradir	Witterungseinflüsse:	ja		
		Vanaiatana.			
Körnung:		Konsistenz: ⊠ fest		Homogenität:	
körnig				☐ homogen	
schlammig Angaben zur Prob	onohmo	☐ flüssig		inhomogen	
Entnahme mittels:		Probenahmegerät:		Verjüngung durch:	
Bohrstock		☐ Hammer und Me		fraktioniertes schaufeli	n
Schürfschlitz		Schaufel/Handso		aufkegeln und vierteln	
Rammkernsondi	aruna	Spatel	Haulei		(Flobelialillekieuz)
Probenahmevolun		☑ Opatei			
Korngröße [mm]		Volumen Einzelpro	sha [I]:	Volumen Laborprobe [I]	
Konigroße [illin] ⊠ ≤ 2		□ 0,5	be [i].		•
□ > 2 - ≤ 20		□ 0,5 □ 1		□ 2	
□ > 20 - ≤ 50		☐ 2		□ ² □ 4	
□ > 50 - ≤ 120		□ 2 □ 5		☐ 1 0	
□ ≥ 120		Stück=Einzelpro	he	Stück=Einzelprobe	
Anzahl der entnon	menen Prober				
Volumen Anza			Anzahl	Probenbezeichnung:	
Einze		or. Sammelpr.	Laborpr.		
\Box - 5m ³ \Box 2	⊠ 1		⊠ 1	"MP Humusboden) "
☐ - 30m³ ☐ 8	□ 2		□ 2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
☐ - 60m³ ☐ 1			□ 3	Schluff, sandig, humos (C	berboden mit
☐ - 100m³ ☐ 1			☐ 4	Grasnarbe), Kohlestückch	
\square - 150m ³ \square 2			□ 5	(nordöstlicher Bereich)	,
\square - 200m ³ \boxtimes 2			<u> </u>	,	
☐ - 300m³ ☐ 2	_		□ 7		
\square - 400m ³ \square 3			□ 8		
	6 🔲 9		<u> </u>		
☐ - 600m³ ☐ 4	0 🗌 10	Ц	<u> </u>		
☐ - 800m³ ☐	∪ ⊔ 10				
					
Probengefäße:		E-Eimer Glas	☐ PE-Becher		
Probentransport:	☐ ⊠ PE □ ge	kühlt 🗌 kühl	dunkel		
	☐ ⊠ PE □ ge	kühlt 🗌 kühl	dunkel		
Probentransport: Bemerkungen: auftr	☐ ⊠ PE □ ge	kühlt 🗌 kühl	dunkel	Untersuchendes Labor:	
Probentransport: Bemerkungen: auftr (Skizze / Foto)	☐ PE ☐ ge	kühlt 🗌 kühl	dunkel	Untersuchendes Labor: Eurofins Umwelt West GmbH	
Probentransport: Bemerkungen: auftr (Skizze / Foto) Probenehmer:	☐ PE ☐ ge	kühlt ☐ kühl Misch- / Laborprobe für d	dunkel ie Analytik vorgesehen		
Probentransport: Bemerkungen: auftr (Skizze / Foto) Probenehmer:	☐ PE ☐ ge	kühlt ☐ kühl Misch- / Laborprobe für d	dunkel		
Probentransport: Bemerkungen: auftr (Skizze / Foto) Probenehmer:	☐ PE ☐ ge	kühlt ☐ kühl Misch- / Laborprobe für d	dunkel ie Analytik vorgesehen		